Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ふわっと理解する類似画像検索技術
Search
TajimaTheMemer
April 17, 2019
Programming
0
160
ふわっと理解する類似画像検索技術
TajimaTheMemer
April 17, 2019
Tweet
Share
More Decks by TajimaTheMemer
See All by TajimaTheMemer
事業成長を加速させるGoのコード品質改善の取り組み / Code quality improvement for Go language
tajimathememer
5
2.6k
CronJobがschedule通りにJobを生成しない時
tajimathememer
0
1.4k
入門wasm
tajimathememer
0
130
Machine Learning As Software
tajimathememer
0
79
Other Decks in Programming
See All in Programming
Namespace and Its Future
tagomoris
6
710
Navigation 2 を 3 に移行する(予定)ためにやったこと
yokomii
0
330
機能追加とリーダー業務の類似性
rinchoku
2
1.3k
ぬるぬる動かせ! Riveでアニメーション実装🐾
kno3a87
1
230
Oracle Database Technology Night 92 Database Connection control FAN-AC
oracle4engineer
PRO
1
460
250830 IaCの選定~AWS SAMのLambdaをECSに乗り換えたときの備忘録~
east_takumi
0
400
ユーザーも開発者も悩ませない TV アプリ開発 ~Compose の内部実装から学ぶフォーカス制御~
taked137
0
190
はじめてのMaterial3 Expressive
ym223
2
880
Ruby Parser progress report 2025
yui_knk
1
450
RDoc meets YARD
okuramasafumi
4
170
詳解!defer panic recover のしくみ / Understanding defer, panic, and recover
convto
0
250
Deep Dive into Kotlin Flow
jmatsu
1
360
Featured
See All Featured
Become a Pro
speakerdeck
PRO
29
5.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Large-scale JavaScript Application Architecture
addyosmani
513
110k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Six Lessons from altMBA
skipperchong
28
4k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Practical Orchestrator
shlominoach
190
11k
Transcript
ふわっと理解する 類似画像検索技術 社内
今日話すこと 統計・機械学習の専門的知識を有さない一般的なエ ンジニア向けに雰囲気で類似画像検索技術を理解し てもらう。
今日話さないこと ソースコードの中身 数式は一切使いません
類似画像検索技術 画像データをクエリとしてクエリと類似度の高い画像 データを検索する技術
画像の類似尺度は様々 タッチ・テクスチャーが 似てる 対象・構図が似てる ゴッホの「ひまわり」 ひまわりの写真 ゴッホの「夜のカフェテラス」
画像の類似尺度は様々 タッチ・テクスチャーが似てる 対象・構図が似てる ゴッホの「ひまわり」 ひまわりの写真 ゴッホの「夜のカフェテラス」
画像の類似尺度は様々 タッチ・テクスチャーが似てる 対象・構図が似てる ゴッホの「ひまわり」 ひまわりの写真 ゴッホの「夜のカフェテラス」 今日はこっちの話
類似画像検索技術も様々
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
しかし、ほぼ全ての手法で以下の流れは 共通する もにょもにょ...
今日は機械学習の手法を3つ組み合わせ たやり方を説明します。
具体的な流れ 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
フェーズ 特徴抽出
フェーズ1:特徴抽出 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
特徴抽出とは 推定や分析に有用と思われる情報を,生データから 抽出し,特徴として使えるようにすること 田島 特徴ベクトル ㎝ 特徴抽出
今回は 画像データからの特徴抽出 を使います。 ディープラーニングの手法の一種 空間的相関性のあるデータに強い 画像 音声
による画像分類 猫 入力された画像に写っている一般物体を分類する学習器を にデータを学習させて作成 犬 兎 犬 猫 兎 入力(RGB画像)
入力層 出力層 中間層
による特徴抽出 猫 犬 兎 犬 猫 兎 入力(RGB画像) 入力層 出力層
中間層 学習済み学習器の中間層の出力は一般物体の 視覚認識に基づいた特徴表現 特徴ベクトル
今回は という のアーキテクチャの 一種を クラスの一般物体画像を分類するタ スクで学習させたモデル 学習済みモデル に画 像を入力した時の中間層の出力 次元
を特 徴ベクトルとする
フェーズ :次元削減 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
次元削減 データの意味をできるだけ保ちつつ データの次元を減らすこと
直感的なイメージ 身長[cm] 体重[kg] α 2次元 1次元 データの意味をできるだけ保ちつ つ次元を減らす Aさん Bさん
Cさん Aさん Bさん Cさん
今回は 主成分分析 という手法を使います。 次元→ 次元に圧縮。
なぜ次元削減が必要か フェーズ3 近似最近傍探索をうまく機能させるために は、データの次元数を 次元以下にする必要があ る
フェーズ 近傍探索 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
近傍探索とは 距離空間における最も近い点を探索すること。 今回でいえば、最も近い画像の特徴ベクトルを探索すること。
今回は 高速近似最近傍探索ライブラリ 製 を使用。 ヒューリスティックではあるが、高速
実験
データセット で見つけた映画ポスターのデータセット約4万枚 そのうち約 万枚を使用
クエリ画像と類似度が高い の 映画ポスターの画像を出力してみる
クエリ1 クエリ画像 TOP 1 TOP 2 TOP 3 ※画像の著作権・肖像権を考慮。
クエリ クエリ画像 TOP 1 TOP 2 TOP 3 ※画像の著作権・肖像権を考慮。
クエリ クエリ画像 TOP 1 TOP 2 TOP 3 ※画像の著作権・肖像権を考慮。
おしまい