Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ふわっと理解する類似画像検索技術
Search
TajimaTheMemer
April 17, 2019
Programming
0
160
ふわっと理解する類似画像検索技術
TajimaTheMemer
April 17, 2019
Tweet
Share
More Decks by TajimaTheMemer
See All by TajimaTheMemer
事業成長を加速させるGoのコード品質改善の取り組み / Code quality improvement for Go language
tajimathememer
5
2.8k
CronJobがschedule通りにJobを生成しない時
tajimathememer
0
1.5k
入門wasm
tajimathememer
0
140
Machine Learning As Software
tajimathememer
0
91
Other Decks in Programming
See All in Programming
SQL Server 2025 LT
odashinsuke
0
140
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
180
ゆくKotlin くるRust
exoego
1
200
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
630
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
140
Python札幌 LT資料
t3tra
7
1.1k
[AI Engineering Summit Tokyo 2025] LLMは計画業務のゲームチェンジャーか? 最適化業務における活⽤の可能性と限界
terryu16
2
280
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
11
5.2k
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
250
GoLab2025 Recap
kuro_kurorrr
0
3.7k
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
160
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
440
Featured
See All Featured
Amusing Abliteration
ianozsvald
0
85
エンジニアに許された特別な時間の終わり
watany
106
220k
Chasing Engaging Ingredients in Design
codingconduct
0
97
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
420
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
46
What's in a price? How to price your products and services
michaelherold
246
13k
Paper Plane
katiecoart
PRO
0
45k
Transcript
ふわっと理解する 類似画像検索技術 社内
今日話すこと 統計・機械学習の専門的知識を有さない一般的なエ ンジニア向けに雰囲気で類似画像検索技術を理解し てもらう。
今日話さないこと ソースコードの中身 数式は一切使いません
類似画像検索技術 画像データをクエリとしてクエリと類似度の高い画像 データを検索する技術
画像の類似尺度は様々 タッチ・テクスチャーが 似てる 対象・構図が似てる ゴッホの「ひまわり」 ひまわりの写真 ゴッホの「夜のカフェテラス」
画像の類似尺度は様々 タッチ・テクスチャーが似てる 対象・構図が似てる ゴッホの「ひまわり」 ひまわりの写真 ゴッホの「夜のカフェテラス」
画像の類似尺度は様々 タッチ・テクスチャーが似てる 対象・構図が似てる ゴッホの「ひまわり」 ひまわりの写真 ゴッホの「夜のカフェテラス」 今日はこっちの話
類似画像検索技術も様々
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
しかし、ほぼ全ての手法で以下の流れは 共通する もにょもにょ...
今日は機械学習の手法を3つ組み合わせ たやり方を説明します。
具体的な流れ 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
フェーズ 特徴抽出
フェーズ1:特徴抽出 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
特徴抽出とは 推定や分析に有用と思われる情報を,生データから 抽出し,特徴として使えるようにすること 田島 特徴ベクトル ㎝ 特徴抽出
今回は 画像データからの特徴抽出 を使います。 ディープラーニングの手法の一種 空間的相関性のあるデータに強い 画像 音声
による画像分類 猫 入力された画像に写っている一般物体を分類する学習器を にデータを学習させて作成 犬 兎 犬 猫 兎 入力(RGB画像)
入力層 出力層 中間層
による特徴抽出 猫 犬 兎 犬 猫 兎 入力(RGB画像) 入力層 出力層
中間層 学習済み学習器の中間層の出力は一般物体の 視覚認識に基づいた特徴表現 特徴ベクトル
今回は という のアーキテクチャの 一種を クラスの一般物体画像を分類するタ スクで学習させたモデル 学習済みモデル に画 像を入力した時の中間層の出力 次元
を特 徴ベクトルとする
フェーズ :次元削減 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
次元削減 データの意味をできるだけ保ちつつ データの次元を減らすこと
直感的なイメージ 身長[cm] 体重[kg] α 2次元 1次元 データの意味をできるだけ保ちつ つ次元を減らす Aさん Bさん
Cさん Aさん Bさん Cさん
今回は 主成分分析 という手法を使います。 次元→ 次元に圧縮。
なぜ次元削減が必要か フェーズ3 近似最近傍探索をうまく機能させるために は、データの次元数を 次元以下にする必要があ る
フェーズ 近傍探索 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
近傍探索とは 距離空間における最も近い点を探索すること。 今回でいえば、最も近い画像の特徴ベクトルを探索すること。
今回は 高速近似最近傍探索ライブラリ 製 を使用。 ヒューリスティックではあるが、高速
実験
データセット で見つけた映画ポスターのデータセット約4万枚 そのうち約 万枚を使用
クエリ画像と類似度が高い の 映画ポスターの画像を出力してみる
クエリ1 クエリ画像 TOP 1 TOP 2 TOP 3 ※画像の著作権・肖像権を考慮。
クエリ クエリ画像 TOP 1 TOP 2 TOP 3 ※画像の著作権・肖像権を考慮。
クエリ クエリ画像 TOP 1 TOP 2 TOP 3 ※画像の著作権・肖像権を考慮。
おしまい