Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Google Colaboratoryで学ぶAIの基礎と正体 / googlecolabo...
Search
Takahiro Kato
August 26, 2018
Technology
0
1.4k
Google Colaboratoryで学ぶAIの基礎と正体 / googlecolaboratory-de-manabu-ai-no-kiso-to-shotai
[Google Colaboratory](
https://connpass.com/event/96396/)で学ぶAIの基礎と正体で発表した資料です
。
Takahiro Kato
August 26, 2018
Tweet
Share
More Decks by Takahiro Kato
See All by Takahiro Kato
今すぐ数分で出来る業務ハック - 見えない工数の削減と効果 / imasugusufundedekirugyomuhack-minenaikosunosakugentokoka
takahirokato
0
680
Windows10の設定作業をPowerShellでハック / Windows10nosetteisagyowopowershelldehack
takahirokato
0
650
Google Colaboratoryで学ぶ機械学習の基礎 / googlecolaboratory-de-manabu-kikaigakushu-no-kiso
takahirokato
0
500
JAWS-UG 愛媛 第20回勉強会資料 / amazon-sagemaker-demanabu-kikaigakushunokiso-and-tsukaikata
takahirokato
0
1.1k
自己流ML vs Amazon MLから得た知見と未来 / jikoryuml-vs-amazonml
takahirokato
0
990
業務ハック勉強会@愛媛 オープニングトーク / gyoumu-hack-study-ehime-opening
takahirokato
0
390
経験から学んだ反抗勢力の本音と正しい業務改善の1つのあり方 / gyoumu-hack-study-ehime
takahirokato
0
760
Kaggleで始めるAI(モデル)構築
takahirokato
0
610
AIの理解から始めるAI導入への戦略とAWS
takahirokato
1
2.1k
Other Decks in Technology
See All in Technology
関係性が駆動するアジャイル──GPTに人格を与えたら、対話を通してふりかえりを習慣化できた話
mhlyc
0
130
BirdCLEF+2025 Noir 5位解法紹介
myso
0
180
OCI Network Firewall 概要
oracle4engineer
PRO
1
7.7k
【新卒研修資料】LLM・生成AI研修 / Large Language Model・Generative AI
brainpadpr
23
16k
バイブコーディングと継続的デプロイメント
nwiizo
2
380
GopherCon Tour 概略
logica0419
2
160
ユニットテストに対する考え方の変遷 / Everyone should watch his live coding
mdstoy
0
110
Geospatialの世界最前線を探る [2025年版]
dayjournal
3
460
Modern_Data_Stack最新動向クイズ_買収_AI_激動の2025年_.pdf
sagara
0
180
全てGoで作るP2P対戦ゲーム入門
ponyo877
3
1.3k
pprof vs runtime/trace (FlightRecorder)
task4233
0
150
Flaky Testへの現実解をGoのプロポーザルから考える | Go Conference 2025
upamune
1
390
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Typedesign – Prime Four
hannesfritz
42
2.8k
For a Future-Friendly Web
brad_frost
180
9.9k
Code Review Best Practice
trishagee
72
19k
Faster Mobile Websites
deanohume
310
31k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Embracing the Ebb and Flow
colly
88
4.8k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
The Cost Of JavaScript in 2023
addyosmani
53
9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Transcript
Google ColaboratoryͰֶͿAIͷجૅͱਖ਼ମ 4AI: Ճ౻ و
Agenda w ࣗݾհ w ༰ͷઆ໌ w ػցֶशͷجૅ ࠲ֶ w
ػցֶशϋϯζΦϯ ϓϩάϥϜ࠲ֶ w ػցֶश·ͱΊ w ͘͘༻ڭࡐͷ͝հ
ࣗݾհ ໊લ Ճ౻و ͔ͱ͏͔ͨͻΖ ࣄɿ Ѫඤݝ৽ډࢢࡏॅ ݩͷձࣾͰάϧʔϓ̨̚*5ਪਐ ࠓ͔͚͍ͬͯΔ̞̩ٕज़ɿ "*ɺ*P5ɺ4FSWFSMFTT"SDIJUFDUVSF
ࠓ͔͚͍ͬͯΔ"*ؔͷٕज़ɾαʔϏεɿ ػցֶशɺ1ZUIPOɺ,BHHMFɺTDJLJUMFBSO ʢσΟʔϓϥʔχϯάΓ͍ͨʜʣ
༰ͷઆ໌
༰ͷઆ໌ ࠓͷΰʔϧ w (PPHMF$PMBCPSBUPSZ˞ ͰػցֶशͷϞσϧΛ࡞ w ػցֶशͷΈͷཧղ w Ͱ͖ΔࣄɾͰ͖ͳ͍ࣄ w
ඞཁͳͷ w ػցֶशͷڭࡐͷ͓࣋ͪؼΓ ˞Ҏ߱$PMBCͱهࡌ
༰ͷઆ໌ ϋϯζΦϯͰΒͳ͍ࣄ w ϓϩάϥϜͷৄ͍͠આ໌ w ػցֶशϓϩάϥϜͷ࡞ w TDJLJUMFBSO ػցֶशϥΠϒϥϦ Λ༻
w σʔλͷલॲཧΛ࣮ࢪ
ػցֶशͷجૅ
ػցֶशͷجૅ ͡Ίʹ w ຊ༰ͷػցֶश㲈ػցֶश<ڭࢣ͋Γֶश> w ຊ༰ͷϞσϧʢܭࢉࣜʣͷྫ ⭕Θ͔Γ͢͞ ❎࣮ફత
ػցֶशͷجૅ ΠϯϓοτΛΞτϓοτʹม Ϟσϧ ࣜ ʹΠϯϓοτͨ͠Λೖͯ͠ࢉग़ ྫɽ͔Βඅ༻Λࢉग़͢Δ"* "*ͷϞσϧɿZY Zඅ༻Y ͕ͷ߹
<> <අ༻>
ػցֶशͷجૅ අ༻ Z Y ֶशσʔλ
ϓϩοτਤ্ͷ ͷ༩ ˞ֶशσʔλͱΠϯϓοτ<>ͱΞτϓοτ<අ༻>͕ηοτʹͳͬͨσʔλ
ػցֶशͷجૅ අ༻ Z Y Ծઆͷ࡞
˞ԾઆͱΠϯϓοτͱΞτϓοτͷؔΛਪଌ͠ɺࣜͰදͨ͠ͷ
ػցֶशͷجૅ අ༻ Z Y ZY
Ϟσϧͷ࠾༻ Ϟσϧͱֶशσʔλͷޡࠩͷτʔλϧ͕࠷খ͍͞ԾઆΛϞσϧʹ࠾༻
ػցֶशͷجૅ Ϟσϧ·ͱΊ w "*͕Πϯϓοτ˞ΛΞτϓοτ˞ʹม͢Δͷ w ֶशσʔλͱΞϧΰϦζϜʹΑͬͯߏங͞ΕΔͷ w ਖ਼ମࣜ ˞ਓ͔Βͷ࣭ͳͲ ˞ਓ͔Βͷ࣭ʹର͢Δ͑ͳͲ
ػցֶशϋϯζΦϯ
ػցֶशϋϯζΦϯ ϋϯζΦϯͰ༻͢Δͷ w ࣮ߦڥ w (PPHMF$PMBCPSBUPSZ w ػցֶश༻ͷσʔλ w TDJLJUMFBSOͷνϡʔτϦΞϧσʔλ
ػցֶशϋϯζΦϯ $PMBCͱʁ w (PPHMF͕ػցֶशͷڭҭݚڀ༻ʹఏڙͨ͠ΞϓϦ w (PPHMF͕ΧελϚΠζͨ͠+VQZUFS/PUFCPPL w ڥ࡞͕୭ͰͰ͖ΔϨϕϧͰ؆୯ w ແྉʢ(16ͷ༻Մೳʣ
˞+VQZUFS/PUFCPPLػցֶशʹΑ͘༻͞ΕΔͷ
ػցֶशϋϯζΦϯ $PMBCͷ੍ݶ w Πϯελϯεىಈ͔Β࣌ؒܦաͰΠϯελϯεఀࢭ w ηογϣϯ͕Ε͔ͯΒܦաͰΠϯελϯεఀࢭ ˞ϒϥβͷΦʔτϦϩʔυͷΞυΦϯͳͲͰରࡦՄೳ
ػցֶशϋϯζΦϯ ϋϯζΦϯ։࢝ʂ
ػցֶशϋϯζΦϯ ϋϯζΦϯ༻σʔλ IUUQTCJUMZX&+4 ಡΈࠐΉϑΝΠϧ 3FHSFTTJPO #PTUPOIPVTFQSJDFTJQZOC
ػցֶश·ͱΊ
ػցֶश·ͱΊ ࣈ͔͠ѻ͑ͳ͍ Ϟσϧࣜ ֶशσʔλʹΑͬͯਫ਼͕େ͖͘มԽ͢Δ w ༻͢Δಛ ΧϥϜ ͷચ͍ग़͠ w
ܽଛɾҟৗͷॲཧ मਖ਼ɾআ ਫ਼ߴ͘ͳ͍ աڈσʔλ͔Βਪଌͨ͠࠷దղ తʹԠͯ͡ΞϧΰϦζϜͷܾఆ͕ඞཁ ཁઐࣝ Ϟσϧ࡞Δ͚ͩͳΒ؆୯ɻਫ਼ΛٻΊΔͱ͍͠
ػցֶश·ͱΊ ػցֶशͷ४උ Ӧۀੳͷྫɽ Ӧۀ׆ಈ༰ΛจষͰͳ͘ɺӦۀ׆ಈͷϙΠϯτΛϦετ Ξοϓͯ͠ɺߦಈͷ༗ແ PS είΞ
Ͱೖྗ ΞϙΛࣄલʹͱΓɺࣄ લௐ͔ࠪΒಘͨ Λղܾ͢ΔιϦϡʔγϣ ϯΛఏҊͯ͠ܖ͕ͱ Ε·ͨ͠ Ξϙɹɹɹɹɹ☑ ࣄલௐࠪɹɹɹ☑ ఏҊ࣋ࠐɹ☑ ͓࢈ɹɹɹɹ⬛ ܖ☑
͘͘༻ڭࡐ ͷ͝հ
͘͘༻ڭࡐͷ͝հ w ,BHHMF w $PVSTFSB w 4UBOGPSE6OJWFSTJUZ.BDIJOF-FBSOJOH w ౦ژେֶάϩʔόϧফඅΠϯςϦδΣϯεدߨ࠲˞
w 2JJUBʲεϚϗ0,࣮ߦ͠ͳ͕ΒֶͿʳ౦େদඌݚͷσʔ λαΠΤϯςΟετҭ%FFQ-FBSOJOHجૅߨ࠲Λ ࣗश͢Δ ˞Ҏ߱౦ژେֶ($*دߨ࠲ͱهࡌ
͘͘༻ڭࡐͷ͝հ ,BHHMFͱ اۀݚڀऀ͕σʔλΛߘ͠ɺ ੈքதͷ౷ܭՈσʔλੳՈ͕ͦͷ࠷దϞσϧΛڝ͍߹͏ɺ ༧ଌϞσϦϯάٴͼੳख๏ؔ࿈ϓϥοτϑΥʔϜɻ 8JLJQFEJBΑΓҾ༻ ༻͢ΔϓϩάϥϜݴޠʮ1ZUIPOʯɺʮ3ʯͰɺ ʮ+VQZUFS/PUFCPPLʯ༻ҙ͞Ε͍ͯΔɻ
͘͘༻ڭࡐͷ͝հ ϝϦοτ ϝδϟʔͳػցֶशͷ։ൃڥ͕ಘΒΕΔ ༷ʑͳσʔλΛ৮Δࣄ͕Ͱ͖Δ ଞͷਓͷϞσϧͷ࡞ํ๏ΛΔ͜ͱ͕ग़དྷΔ ࣗͷϖʔεͰ࣮ફ ίϯϖʹࢀՃ Ͱ͖Δ ϥϯΩϯάʹΑͬͯ٬؍తͳࣗͷ࣮ྗΛܭΕΔ ϥϯΩϯάɾশ߸ɾϝμϧʹΑΔεΩϧͷূ໌
͕ۚΒ͑Δ
͘͘༻ڭࡐͷ͝հ σϝϦοτ ӳޠ
͘͘༻ڭࡐͷ͝հ KaggleΛ׆༻͍ͯ͠Δຊاۀ ίϯϖ։࠵ w ϝϧΧϦ ۚ૯ֹສυϧ w ϦΫϧʔτ ۚ૯ֹສԁ
ίϯϖࢀՃ w %F/" ۀதͷ,BHHMFࢀՃΛਪ
͘͘༻ڭࡐͷ͝հ ,BHHMFͷొํ๏ͪ͜ΒΛࢀߟʹ IUUQTCJUMZ.L+WW4
͘͘༻ڭࡐͷ͝հ Courseraͱ w ੈքதͷେֶͷतۀΛΦϯϥΠϯͰडߨͰ͖ΔαʔϏε w ແঈ मྃূͷൃߦ༗ঈ w ͓Ίͷतۀ4UBOGPSE6OJWFSTJUZ.BDIJOF
-FBSOJOH w Իӳޠ͕ͩຊޠࣈນ͋Γ
͘͘༻ڭࡐͷ͝հ ౦ژେֶGCIدߨ࠲ͱ • Deep LearningͰ༗໊ͳ౦େদඌݚ͕Jupyter notebook ܗࣜͰσʔλੳ/ Deep LearningߨٛࢿྉΛͦΕͧΕ ެ։
• PythonػցֶशؔͷϥΠϒϥϦͷษڧ͋Γ
͘͘༻ڭࡐͷ͝հ PythonؚΊͯجຊ͔Βษڧ͢Δ߹ ➡౦ژେֶGCIدߨ࠲ Qiitaهࣄ: https://bit.ly/2MgRSMw ػցֶशͷ͔Γ͍͢तۀΛٻΊΔ߹ ➡Coursera: https://www.coursera.org/ ଞਓΛࢀߟʹ͍ͨ͠ɾ࣮ફ͍ͨ͠߹ ➡Kaggle:
https://www.kaggle.com/