Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PRML勉強会 第五章 -前半 - 川上雄太作成分
Search
takegue
June 02, 2014
Technology
0
1.5k
PRML勉強会 第五章 -前半 - 川上雄太作成分
代理Upload
takegue
June 02, 2014
Tweet
Share
More Decks by takegue
See All by takegue
不自然言語の自然言語処理: コード補完を支える最新技術
takegue
1
820
つかわれるプラットフォーム 〜デザイン編〜@DPM#2
takegue
2
12k
カルチャーとエンジニアリングをつなぐ データプラットフォーム
takegue
4
6.2k
toC企業でのデータ活用 (PyData.Okinawa + PythonBeginners沖縄 合同勉強会 2019)
takegue
4
1k
Rettyにおけるデータ活用について
takegue
0
860
Sparse Overcomplete Word Vector Representations
takegue
0
200
Aligning Sentences from Standard Wikipedia to Simple Wikipedia
takegue
0
200
High-Order Low-Rank Tensors for Semantic Role Labeling
takegue
0
120
Dependency-based empty category detection via phrase structure trees
takegue
0
70
Other Decks in Technology
See All in Technology
誰も全体を知らない ~ ロールの垣根を超えて引き上げる開発生産性 / Boosting Development Productivity Across Roles
kakehashi
1
230
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
テストコード品質を高めるためにMutation Testingライブラリ・Strykerを実戦導入してみた話
ysknsid25
7
2.7k
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
3
390
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
組織成長を加速させるオンボーディングの取り組み
sudoakiy
2
180
Amazon Personalizeのレコメンドシステム構築、実際何するの?〜大体10分で具体的なイメージをつかむ〜
kniino
1
100
OCI Security サービス 概要
oracle4engineer
PRO
0
6.5k
Oracle Cloud Infrastructureデータベース・クラウド:各バージョンのサポート期間
oracle4engineer
PRO
28
13k
生成AIが変えるデータ分析の全体像
ishikawa_satoru
0
160
Platform Engineering for Software Developers and Architects
syntasso
1
520
AWS Lambdaと歩んだ“サーバーレス”と今後 #lambda_10years
yoshidashingo
1
180
Featured
See All Featured
Six Lessons from altMBA
skipperchong
27
3.5k
Done Done
chrislema
181
16k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.2k
The Pragmatic Product Professional
lauravandoore
31
6.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
890
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
370
Fireside Chat
paigeccino
34
3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
655
59k
Embracing the Ebb and Flow
colly
84
4.5k
Teambox: Starting and Learning
jrom
133
8.8k
Transcript
PRML 勉強会 第5章 ニューラルネットワーク 担当:王研究室 川上雄太
ニューラルネットワーク(以降NN)はいろんな事に使える 最近、第3次NNブームが到来(過ぎつつある?) NNのライブラリ,ツールキットはいろいろあるので、 割と手軽に利用可能だったりする
目標 それらを使うときのために • 中で何が起こっているのか • パラメータの意味 • etc を理解しておくこと! なので、本質的に重要でなさそうな部分はごっそり
省きます。。。 (近似の話、計算の高速化など)
5章のすすめかた(予定) • 第一週 • NNとは何か • NNの訓練 • 誤差逆伝搬 ←重要!
• ヘッセ行列 • 第二週 • NNの正則化、畳み込みNN • 混合密度NN • ベイズNN
NNとは何か PRML §5.1 p.226 – p.233
5.1 フィードフォワードネットワーク関数 • 3,4章でも取り扱ったクラス分類の線形モデルを 思い出す , = =1 (5.1) ・
はクラス分類なら非線形活性化関数 回帰なら恒等写像 • 基底関数の線形和を関数にかける、という式 • をさらにパラメータ依存の関数にすると?
5.1 フィードフォワードネットワーク関数 = = ℎ (1) + 0 (1) =1
(5.3) ← (5.2) ℎ(・)はシグモイド関数 • ここでいう(1)は、1層目という意味 (後で説明) • これを(5.1)式の線形モデルの基底関数とする
5.1 フィードフォワードネットワーク関数 = ℎ (1) + 0 (1) =1 (5.3)
← (5.2) = (2) + 0 (2) =1 (5.5) ← (5.4) (5.1)式の に相当 (5.1)式のf ・ に相当
5.1 フィードフォワードネットワーク関数 入力値を2段階の線形和・非線形関数で変換している = ℎ (1) + 0 (1) =1
(5.3) ← (5.2) = (2) + 0 (2) =1 (5.5) ← (5.4) 入力層 隠れ層 出力層
5.1 フィードフォワードネットワーク関数 • 1つにまとめると • 図で表すと , = 2 =0
ℎ (1) =0 (5.9)
5.1 フィードフォワードネットワーク関数 • こんな図で表せるので”ネットワーク” • (5.9)式の出力を求める計算過程を順伝搬と呼ぶ • 今後この構造を2層NNと呼ぶ • ネットワーク構造には様々な拡張が考えられる
NNのはたらき • 万能近似器 • どんな連続関数でも任意の精度で近似可能 (隠れ層をめっちゃ増やせば)
NNのはたらき • 万能近似器 • どんな連続関数でも任意の精度で近似可能 (隠れ層をめっちゃ増やせば)
NNの訓練 PRML §5.2 p.233 – p.242
何をしたいのか • NNのパラメータは2層まとめて • この重みを最適化したい →誤差関数 の最小化 , = 2
=0 ℎ (1) =0 5.9 再掲
解くべき問題と誤差関数の種類 回帰 2クラス分類 他クラス分類 出力ユニット の 活性化関数 線形出力関数 = ロジスティック
シグモイド関数 = 1 1 + exp − ソフトマックス関数 = exp (, ) exp( (, )) 誤差関数 二乗和誤差関数 = 1 2 , =1 − 2 交差エントロピー誤差関数 E = − ln =1 + 1 − ln 1 − 多クラス交差エントロピー 誤差関数 E = − ln , =1 =1
5.2.1 パラメータ最適化 • 誤差関数の値が小さくなる方向にパラメータを更 新していけばいい(勾配降下法など) (+1) = + ∆() •
いろいろなアルゴリズムがあるが、結局は∆()の 決め方の違い
5.2.4 勾配降下最適化 • 最も単純なアプローチ (+1) = () − (()) •
は学習率パラメータ • 最急降下法ともいう • バッチ訓練では共役勾配法、準ニュートン法な どの方が頑健で速い
5.2.4 勾配降下最適化 • 勾配降下法にはオンライン版もある • オンライン? 個々のデータ点について逐次的に最適化 データの冗長性に強い 局所解を回避しやすい
誤差逆伝搬 error backpropagation PRML §5.3 p.242 – p.250
何をしたいのか • NNは誤差関数を最小化するように学習する (最急降下法の場合) (+1) = () − (()) •
パラメータに関する誤差関数の微分 が 知りたい
5.3.1 誤差関数微分の評価 • 例えば単純な線形モデルの場合 = =1 (5.45) • ある入力パターンnに対する誤差関数は =
1 2 − 2 (5.46) • 重み に関する勾配は = − (5.47) 誤差信号 リンクの 入力値
5.3.1 誤差関数微分の評価 • 多層ネットワークの場合は? 複数層の線形モデルと非線形関数 = = ℎ • 誤差関数
は、 を通してのみ に依存する ことを利用して微分を分解 = (5.50)
5.3.1 誤差関数微分の評価 = 5.50 ここで、 ≡ は誤差と呼ばれる また、 = (5.52)
すると = (5.53)
5.3.1 誤差関数微分の評価 = 5.53 (5.47)式を参考にすると = − (5.54) • 隠れユニットのは
= = (5.55) という感じで入力側に遡って評価
5.3.1 誤差関数微分の評価 • 長々やったけど結局どういうことかというと 逆伝搬公式 = = ℎ′ 出力側 入力側
学習の流れ 0.重みをランダムに振る 1.入力ベクトル による現在の出力を求める (順伝搬) 2.出力層での誤差 を計算する 3. をもとに全ての隠れユニットの を得る(逆伝搬)
4. を用いて誤差関数の微分( )を評価 5.重みを更新 6.誤差が十分小さくなったら終了 ならなければ1.に戻る (+1) = () − (())
とりあえずここまで 次週は ・NNの正則化 ・NNのなかまたち (畳込みNN, 混合密度NN, ベイズNN) ・deep learningの話 についてできるといいなああ