& Makhzani, A. (2023). Action Matching: Learning Stochastic Dynamics from Samples. [Chen ’21] Chen, T., Liu, G. H., & Theodorou, E. (2021, October). Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory. In International Conference on Learning Representations. [Liu ’22] Liu, G. H., Chen, T., So, O., & Theodorou, E. (2022). Deep generalized Schrödinger bridge.Advances in Neural Information Processing Systems, 35, 9374-9388. [Wang ’21] Wang, G., Jiao, Y., Xu, Q., Wang, Y., & Yang, C. (2021, July). Deep generative learning via schrödinger bridge. In International Conference on Machine Learning (pp. 10794-10804). PMLR. [Zhang ’22] Zhang, Q., & Chen, Y. (2022). PATH INTEGRAL SAMPLER: A STOCHASTIC CONTROL APPROACH FOR SAMPLING. Proceedings of Machine Learning Research. [Gushchin. ’22] Gushchin, N., Kolesov, A., Korotin, A., Vetrov, D., & Burnaev, E. (2022). Entropic neural optimal transport via diffusion processes. arXiv preprint arXiv:2211.01156. [Somnath ’23]Somnath, V. R., Pariset, M., Hsieh, Y. P., Martinez, M. R., Krause, A., & Bunne, C. (2023). Aligned Diffusion Schrö dinger Bridges. arXiv preprint arXiv:2302.11419. [Tong ’23] Tong, A., Malkin, N., Huguet, G., Zhang, Y., Rector-Brooks, J., Fatras, K., ... & Bengio, Y. (2023, July). Improving and generalizing flow-based generative models with minibatch optimal transport. In ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems. [Tong ’23] Tong, A., Malkin, N., Fatras, K., Atanackovic, L., Zhang, Y., Huguet, G., ... & Bengio, Y. (2023). Simulation-free Schrödinger bridges via score and flow matching. arXiv preprint arXiv:2307.03672.