[7] これらはタスク割り当て手法について議論しており, 結果集約については議論されていない 混在状況における結果集約についてはTamuraらがAIワーカの出力する不 確実性を集約に利用することで品質向上が可能になることを報告 [8] タスク数不均一の問題については考慮していない [6] Masaki Kobayashi, Kei Wakabayashi, and Atsuyuki Morishima. Human+AI crowd task assignment considering result quality requirements. In Proceedings of the AAAI Conference on Human Computation and Crowdsourcing (HCOMP), Vol. 9, pp. 97–107, 2021. [7] Tomoya Kanda, Hiroyoshi Ito, and Atsuyuki Morishima. Efficient evaluation of AI workers for the human+AI crowd task assignment. In Proceedings of IEEE International Conference on Big Data (BigData), pp. 3995–4001, 2022. [8] Takumi Tamura, Hiroyoshi Ito, Satoshi Oyama, and Atsuyuki Morishima. Influence of AI’s uncertainty in the Dawid-Skene aggregation for human-AI crowdsourcing. In Information for a Better World: Wisdom, Well-being, Win-win, 19th International Conference on Information (iConference 2024), in press.