Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Oh, you're so random
Search
Vicent Martí
March 25, 2012
Programming
14
2.6k
Oh, you're so random
Randomness and pink ponies in Codemotion Rome 2012
Vicent Martí
March 25, 2012
Tweet
Share
More Decks by Vicent Martí
See All by Vicent Martí
Unicorns Die With Bullets Made of Glitter
tanoku
6
550
Threedee Tales From Urban Bohemia
tanoku
3
830
My Mom told me that Git doesn't scale
tanoku
28
1.9k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Ruby is Unlike a Banana
tanoku
97
11k
A talk about libgit2
tanoku
11
1.7k
Other Decks in Programming
See All in Programming
「手軽で便利」に潜む罠。 Popover API を WCAG 2.2の視点で安全に使うには
taitotnk
0
870
Compose Multiplatform × AI で作る、次世代アプリ開発支援ツールの設計と実装
thagikura
0
170
RDoc meets YARD
okuramasafumi
4
170
AI Coding Agentのセキュリティリスク:PRの自己承認とメルカリの対策
s3h
0
240
意外と簡単!?フロントエンドでパスキー認証を実現する WebAuthn
teamlab
PRO
2
780
FindyにおけるTakumi活用と脆弱性管理のこれから
rvirus0817
0
550
複雑なドメインに挑む.pdf
yukisakai1225
5
1.2k
Deep Dive into Kotlin Flow
jmatsu
1
370
rage against annotate_predecessor
junk0612
0
170
テストカバレッジ100%を10年続けて得られた学びと品質
mottyzzz
2
610
AI Agents: How Do They Work and How to Build Them @ Shift 2025
slobodan
0
110
Cache Me If You Can
ryunen344
2
4k
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
590
Building an army of robots
kneath
306
46k
Gamification - CAS2011
davidbonilla
81
5.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
820
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Unsuck your backbone
ammeep
671
58k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Transcript
None
select a random element
select a random element ‘tis one is ok.
None
None
Information Theory
hard TOPIC Information Theory
hard TOPIC dumb SPEAKER + Information Theory
0≤H(X)≤1 where X is a discrete random variable
0≤H(X)≤1 where X is a discrete random variable unpredictable
0≤H(X)≤1 where X is a discrete random variable unpredictable always
the same
None
ask a question.
None
bool is_random(char *bytes, size_t n) { }
bool is_random(char *bytes, size_t n) { } AGHHH
UNIFORM distribution
UNIFORM distribution
select a random element array[rand() % array.size]
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution AGHHH
This is how you kill the RANDOM pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
how to FIX:
how to FIX: 1. Random is hard
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
Math.random() // between 0.0 and 1.0 Javascript
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
prng.rand(5..9) #=> one of [5, 6, 7, 8, 9] prng.rand(5...9) #=> one of [5, 6, 7, 8] Ruby
Good.
Good. (but I don’t care)
None
“PRNGs and Hash functions are in the same family of
algorithms”
None
hash tables out of nowhere!
hash tables out of nowhere! O(1)
hash tables out of nowhere! O(1) uniform
pathological average data set: O(1)
pathological average data set: O(1)
pathological average data set: O(1) O(n)
ONE fix
ONE fix INT_MAX % size == 0
collide make them
collide make them • Brute force
collide make them • Brute force • MITM
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
problem & that’s a
problem & that’s a painful comparisons
problem & that’s a painful comparisons ~700ms responses
MANY fixes
MANY fixes (but only one is right)
MANY fixes (but only one is right) 1. Limiting request
size
this is bad and you should feel bad! MANY fixes
(but only one is right) 1. Limiting request size
MANY fixes (but only one is right) 2. Changing the
hash table
MANY fixes (but only one is right) 2. Changing the
hash table (no comment)
MANY fixes (but only one is right) 3. Bring back
the random
None
“Randomness is too important to be left to chance”
Thanks. “Randomness is too important to be left to chance”