Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Oh, you're so random
Search
Vicent Martí
March 25, 2012
Programming
14
2.5k
Oh, you're so random
Randomness and pink ponies in Codemotion Rome 2012
Vicent Martí
March 25, 2012
Tweet
Share
More Decks by Vicent Martí
See All by Vicent Martí
Unicorns Die With Bullets Made of Glitter
tanoku
5
500
Threedee Tales From Urban Bohemia
tanoku
2
740
My Mom told me that Git doesn't scale
tanoku
28
1.8k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Ruby is Unlike a Banana
tanoku
97
11k
A talk about libgit2
tanoku
11
1.6k
Other Decks in Programming
See All in Programming
Introduction to kotlinx.rpc
arawn
0
690
How mixi2 Uses TiDB for SNS Scalability and Performance
kanmo
36
14k
Flutter × Firebase Genkit で加速する生成 AI アプリ開発
coborinai
0
150
ペアーズでの、Langfuseを中心とした評価ドリブンなリリースサイクルのご紹介
fukubaka0825
2
320
GitHub Actions × RAGでコードレビューの検証の結果
sho_000
0
260
Pythonでもちょっとリッチな見た目のアプリを設計してみる
ueponx
1
550
『GO』アプリ バックエンドサーバのコスト削減
mot_techtalk
0
140
Rails アプリ地図考 Flush Cut
makicamel
1
120
責務と認知負荷を整える! 抽象レベルを意識した関心の分離
yahiru
0
180
Compose でデザインと実装の差異を減らすための取り組み
oidy
1
310
CloudNativePGがCNCF Sandboxプロジェクトになったぞ! 〜CloudNativePGの仕組みの紹介〜
nnaka2992
0
230
SpringBoot3.4の構造化ログ #kanjava
irof
2
990
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
330
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Six Lessons from altMBA
skipperchong
27
3.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Speed Design
sergeychernyshev
27
790
Code Review Best Practice
trishagee
67
18k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.2k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.4k
Transcript
None
select a random element
select a random element ‘tis one is ok.
None
None
Information Theory
hard TOPIC Information Theory
hard TOPIC dumb SPEAKER + Information Theory
0≤H(X)≤1 where X is a discrete random variable
0≤H(X)≤1 where X is a discrete random variable unpredictable
0≤H(X)≤1 where X is a discrete random variable unpredictable always
the same
None
ask a question.
None
bool is_random(char *bytes, size_t n) { }
bool is_random(char *bytes, size_t n) { } AGHHH
UNIFORM distribution
UNIFORM distribution
select a random element array[rand() % array.size]
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution AGHHH
This is how you kill the RANDOM pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
how to FIX:
how to FIX: 1. Random is hard
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
Math.random() // between 0.0 and 1.0 Javascript
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
prng.rand(5..9) #=> one of [5, 6, 7, 8, 9] prng.rand(5...9) #=> one of [5, 6, 7, 8] Ruby
Good.
Good. (but I don’t care)
None
“PRNGs and Hash functions are in the same family of
algorithms”
None
hash tables out of nowhere!
hash tables out of nowhere! O(1)
hash tables out of nowhere! O(1) uniform
pathological average data set: O(1)
pathological average data set: O(1)
pathological average data set: O(1) O(n)
ONE fix
ONE fix INT_MAX % size == 0
collide make them
collide make them • Brute force
collide make them • Brute force • MITM
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
problem & that’s a
problem & that’s a painful comparisons
problem & that’s a painful comparisons ~700ms responses
MANY fixes
MANY fixes (but only one is right)
MANY fixes (but only one is right) 1. Limiting request
size
this is bad and you should feel bad! MANY fixes
(but only one is right) 1. Limiting request size
MANY fixes (but only one is right) 2. Changing the
hash table
MANY fixes (but only one is right) 2. Changing the
hash table (no comment)
MANY fixes (but only one is right) 3. Bring back
the random
None
“Randomness is too important to be left to chance”
Thanks. “Randomness is too important to be left to chance”