Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Oh, you're so random
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Vicent Martí
March 25, 2012
Programming
14
2.6k
Oh, you're so random
Randomness and pink ponies in Codemotion Rome 2012
Vicent Martí
March 25, 2012
Tweet
Share
More Decks by Vicent Martí
See All by Vicent Martí
Unicorns Die With Bullets Made of Glitter
tanoku
6
580
Threedee Tales From Urban Bohemia
tanoku
3
880
My Mom told me that Git doesn't scale
tanoku
28
2.1k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Ruby is Unlike a Banana
tanoku
97
11k
A talk about libgit2
tanoku
11
1.7k
Other Decks in Programming
See All in Programming
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
600
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
180
SourceGeneratorのススメ
htkym
0
160
AtCoder Conference 2025
shindannin
0
1k
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
1.9k
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
850
dchart: charts from deck markup
ajstarks
3
980
CSC307 Lecture 03
javiergs
PRO
1
480
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
410
Data-Centric Kaggle
isax1015
2
720
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.7k
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
180
Featured
See All Featured
Crafting Experiences
bethany
1
43
Thoughts on Productivity
jonyablonski
74
5k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
110
WCS-LA-2024
lcolladotor
0
430
Testing 201, or: Great Expectations
jmmastey
46
8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Docker and Python
trallard
47
3.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Transcript
None
select a random element
select a random element ‘tis one is ok.
None
None
Information Theory
hard TOPIC Information Theory
hard TOPIC dumb SPEAKER + Information Theory
0≤H(X)≤1 where X is a discrete random variable
0≤H(X)≤1 where X is a discrete random variable unpredictable
0≤H(X)≤1 where X is a discrete random variable unpredictable always
the same
None
ask a question.
None
bool is_random(char *bytes, size_t n) { }
bool is_random(char *bytes, size_t n) { } AGHHH
UNIFORM distribution
UNIFORM distribution
select a random element array[rand() % array.size]
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution AGHHH
This is how you kill the RANDOM pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
how to FIX:
how to FIX: 1. Random is hard
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
Math.random() // between 0.0 and 1.0 Javascript
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
prng.rand(5..9) #=> one of [5, 6, 7, 8, 9] prng.rand(5...9) #=> one of [5, 6, 7, 8] Ruby
Good.
Good. (but I don’t care)
None
“PRNGs and Hash functions are in the same family of
algorithms”
None
hash tables out of nowhere!
hash tables out of nowhere! O(1)
hash tables out of nowhere! O(1) uniform
pathological average data set: O(1)
pathological average data set: O(1)
pathological average data set: O(1) O(n)
ONE fix
ONE fix INT_MAX % size == 0
collide make them
collide make them • Brute force
collide make them • Brute force • MITM
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
problem & that’s a
problem & that’s a painful comparisons
problem & that’s a painful comparisons ~700ms responses
MANY fixes
MANY fixes (but only one is right)
MANY fixes (but only one is right) 1. Limiting request
size
this is bad and you should feel bad! MANY fixes
(but only one is right) 1. Limiting request size
MANY fixes (but only one is right) 2. Changing the
hash table
MANY fixes (but only one is right) 2. Changing the
hash table (no comment)
MANY fixes (but only one is right) 3. Bring back
the random
None
“Randomness is too important to be left to chance”
Thanks. “Randomness is too important to be left to chance”