Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Oh, you're so random
Search
Vicent Martí
March 25, 2012
Programming
14
2.5k
Oh, you're so random
Randomness and pink ponies in Codemotion Rome 2012
Vicent Martí
March 25, 2012
Tweet
Share
More Decks by Vicent Martí
See All by Vicent Martí
Unicorns Die With Bullets Made of Glitter
tanoku
5
500
Threedee Tales From Urban Bohemia
tanoku
2
720
My Mom told me that Git doesn't scale
tanoku
28
1.8k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Ruby is Unlike a Banana
tanoku
97
11k
A talk about libgit2
tanoku
11
1.6k
Other Decks in Programming
See All in Programming
Open source software: how to live long and go far
gaelvaroquaux
0
550
DROBEの生成AI活用事例 with AWS
ippey
0
120
AWS Lambda functions with C# 用の Dev Container Template を作ってみた件
mappie_kochi
0
230
Compose でデザインと実装の差異を減らすための取り組み
oidy
1
290
2,500万ユーザーを支えるSREチームの6年間のスクラムのカイゼン
honmarkhunt
6
4.9k
Rubyでつくるパケットキャプチャツール
ydah
1
710
Pulsar2 を雰囲気で使ってみよう
anoken
0
210
AIの力でお手軽Chrome拡張機能作り
taiseiue
0
160
Flutter × Firebase Genkit で加速する生成 AI アプリ開発
coborinai
0
130
『品質』という言葉が嫌いな理由
korimu
0
140
Java Webフレームワークの現状 / java web framework at burikaigi
kishida
9
2.1k
定理証明プラットフォーム lapisla.net
abap34
1
1.7k
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Embracing the Ebb and Flow
colly
84
4.6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
9
1.3k
Building an army of robots
kneath
302
45k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
A designer walks into a library…
pauljervisheath
205
24k
Scaling GitHub
holman
459
140k
For a Future-Friendly Web
brad_frost
176
9.5k
We Have a Design System, Now What?
morganepeng
51
7.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.4k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
Designing for Performance
lara
604
68k
Transcript
None
select a random element
select a random element ‘tis one is ok.
None
None
Information Theory
hard TOPIC Information Theory
hard TOPIC dumb SPEAKER + Information Theory
0≤H(X)≤1 where X is a discrete random variable
0≤H(X)≤1 where X is a discrete random variable unpredictable
0≤H(X)≤1 where X is a discrete random variable unpredictable always
the same
None
ask a question.
None
bool is_random(char *bytes, size_t n) { }
bool is_random(char *bytes, size_t n) { } AGHHH
UNIFORM distribution
UNIFORM distribution
select a random element array[rand() % array.size]
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution AGHHH
This is how you kill the RANDOM pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
how to FIX:
how to FIX: 1. Random is hard
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
Math.random() // between 0.0 and 1.0 Javascript
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
prng.rand(5..9) #=> one of [5, 6, 7, 8, 9] prng.rand(5...9) #=> one of [5, 6, 7, 8] Ruby
Good.
Good. (but I don’t care)
None
“PRNGs and Hash functions are in the same family of
algorithms”
None
hash tables out of nowhere!
hash tables out of nowhere! O(1)
hash tables out of nowhere! O(1) uniform
pathological average data set: O(1)
pathological average data set: O(1)
pathological average data set: O(1) O(n)
ONE fix
ONE fix INT_MAX % size == 0
collide make them
collide make them • Brute force
collide make them • Brute force • MITM
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
problem & that’s a
problem & that’s a painful comparisons
problem & that’s a painful comparisons ~700ms responses
MANY fixes
MANY fixes (but only one is right)
MANY fixes (but only one is right) 1. Limiting request
size
this is bad and you should feel bad! MANY fixes
(but only one is right) 1. Limiting request size
MANY fixes (but only one is right) 2. Changing the
hash table
MANY fixes (but only one is right) 2. Changing the
hash table (no comment)
MANY fixes (but only one is right) 3. Bring back
the random
None
“Randomness is too important to be left to chance”
Thanks. “Randomness is too important to be left to chance”