Upgrade to Pro — share decks privately, control downloads, hide ads and more …

「高次認知」と知覚の理論:認知バイアス、条件文、因果推論

Tatz Takahashi
September 13, 2018

 「高次認知」と知覚の理論:認知バイアス、条件文、因果推論

「高次認知」と知覚の理論:
認知バイアス、条件文、因果推論

東京電機大学 理工学部, ドワンゴ 人工知能研究所
高橋 達二

玉川大学 脳科学研究所
社会神経科学共同研究拠点研究会
「世界や社会と相互作用して生きるヒトや動物の視覚 -生理学、心理物理学、計算論」
2018年9月13日(木)・14日(金)

Tatz Takahashi

September 13, 2018
Tweet

More Decks by Tatz Takahashi

Other Decks in Science

Transcript

  1. ʮߴ࣍ೝ஌ʯͱ஌֮ͷཧ࿦ɿ
    ೝ஌όΠΞεɺ৚݅จɺҼՌਪ࿦
    ౦ژిػେֶ ཧ޻ֶ෦, υϫϯΰ ਓ޻஌ೳݚڀॴ

    ߴڮ ୡೋ

    ۄ઒େֶ ೴Պֶݚڀॴ

    ࣾձਆܦՊֶڞಉݚڀڌ఺ݚڀձ

    ʮੈք΍ࣾձͱ૬ޓ࡞༻ͯ͠ੜ͖Δώτ΍ಈ෺ͷ
    ࢹ֮ ʵੜཧֶɺ৺ཧ෺ཧֶɺܭࢉ࿦ʯ

    2018೥9݄13೔ʢ໦ʣɾ14೔ʢۚʣ

    View Slide

  2. ڞಉݚڀऀ
    • େ༻ݿஐ ؔ੢ֶӃେֶ ૯߹੓ࡦ
    ֶ෦ ઐ೚ߨࢣ (tenured)

    • ۄ଄ߊ޺ D2 ࣾձਓത࢜

    • ԣ઒७و D2

    • Ṥޱᕣن M1

    • ๅాɹ༔ B4

    • ٢୔ӳو B4

    • ࠤ౻࠼ࢠ B3
    • David E Over

    • Jean Baratgin

    • ෰෦խ࢙

    • ෰෦Үࢠ

    • தଜߛࢠ

    • ࢁ༞࢚

    • Guy Politzer

    View Slide

  3. ঞ࿥
    • ਪ࿦΍ҙࢥܾఆɺϓϥϯχϯάΛؚΉ͍ΘΏΔʮߴ࣍ೝ஌ʯͷݚڀ͸ɺਓؒಛ༗ͱݟΒΕΔػೳ
    ͕ଟ͘ɺ·ͨه߸΍࿦ཧʹґଘ͍ͯ͠Δͱߟ͑ΒΕͨͨΊɺ௕͍ؒɺ஌֮ͳͲͷଞ෼໺ͷݚڀͱ
    ͸ಠཱͯ͠ਐΊΒΕͯདྷͨɻ͔͠͠ͳ͕Βલੈل຤͔ΒɺదԠ߹ཧੑ΍ੜଶֶత߹ཧੑͱ͍ͬͨ
    ඪޠͷ΋ͱɺߴ࣍ೝ஌΋·ͨɺ؀ڥͷߏ଄ʢ֬཰෼෍ʣΛ൓ө͠ɺదԠΛ໨తͱͨ͠ػೳͱͯ͠
    Ґஔ෇͚௚͞Ε͖ͯͨɻ͜ͷΞϓϩʔν͸ଟ͘ͷ෼໺Ͱ੒ޭΛऩΊͨଞɺ֬཰ϞσϦϯάͷݴ༿
    ͕ػցֶशͳͲ޻ֶͱڞ௨͍ͯ͠Δ͜ͱ͔Βɺਓ޻஌ೳͷ։ൃʹ΋ӨڹΛ༩͖͍͑ͯͯΔɻେ·
    ͔ʹݴ͑͹ɺೝ஌ͷଊ͑ํͱͯ͠ɺԋ៷͔Βؼೲ΁ɺ࿦ཧ͔Β֬཰΁ɺͱ͍͏γϑτ͕͋Γɺਓ
    ؒͷೝ஌͕ɺ؀ڥͷෆ࣮֬ੑͱϦιʔεͷ༗ݶੑΛ৫ΓࠐΜ্ͩͰదԠతͳ΋ͷͰ͋Δ͜ͱ͕໌
    Β͔ʹͳͬͨɻଞํͰۙ೥Ͱ͸ɺݴ༿΍ه߸ͷॏཁੑ΍ɺ࿦ཧతͳߏ଄Λߟྀͨ͠ਪ࿦ɺͱ͍ͬ
    ͨ؍఺͕ܰࢹ͞Εͯདྷͨ͜ͱʹ൓ল͕ू·Γͭͭ͋Δɻ

    • ຊߨԋͰ͸ɺෆ࣮֬ੑΛߟ্ྀͨ͠Ͱه߸΍ߏ଄Λѻ͏͜ͱͷͰ͖Δɺ de Finetti ͷओ؍֬཰࿦
    ཧֶΛϦόΠόϧͤ͞ɺ৚݅จʹ৽͍͠ϞσϧΛ༩͑Δೝ஌৺ཧֶͷݚڀΛ঺հ͢ΔɻʮpͳΒ
    ͹qʯͱ͍͏৚݅จ͸ɺϧʔϧ΍ҼՌؔ܎ͷදݱͱ఻ୡɺࣾձతͳ΍ΓͱΓʢ໿ଋ΍ڴഭʣͳ
    Ͳɺίϛϡχέʔγϣϯʹத৺తͳ໾ׂΛՌͨ͢ଞɺϩϘςΟΫε΍ࣗવݴޠॲཧʹͱͬͯ΋ॏ
    ཁͰ͋Δɻ͜ΕʹΑΓɺਓ͕ؒ࿦ཧֶʹैΘͣෆ߹ཧͰ͋Δ͜ͱͷূڌͷҰͭͱ͞Ε͖ͯͨʮܽ
    ؕ৚݅จʯύλʔϯ͕આ໌͞Εɺਅཧ஋දλεΫͰසൃ͍ͯͨ͠Ṗͷύλʔϯ΋·ͨઆ໌͞ΕΔɻ
    ·ͨɺ2ࣄ৅ͷڞى৘ใͷ؍࡯͔ΒͦͷؒͷҼՌؔ܎Λ൑அ͢ΔҼՌؼೲʹ͓͍ͯɺσʔλΛ࠷
    ΋Α͘આ໌͢ΔߨԋऀΒͷϞσϧΛɺ֬཰࿦ཧֶ͔Βಋ͚Δɻ͜ΕʹΑΓɺԋ៷͔Βؼೲ·Ͱɺ
    ༷ʑͳλεΫΛ౷Ұతʹѻ͏Մೳੑ͕։͚Δ͜ͱΛ͍ࣔͨ͠ɻ

    View Slide

  4. ߏ੒
    • ࣗݾ঺հͱจ຺

    • ਪ࿦৺ཧֶͷ஌ݟ

    • ৚݅จͱਪ࿦

    • ҼՌਪ࿦

    View Slide

  5. ࣗݾ঺հɿߴڮୡೋ
    • ܭࢉ࿦తೝ஌Պֶ

    • ਪ࿦ɺ൑அɺҙࢥܾఆɺ৚݅จɺจ຺ɺ൱ఆ

    • AIɺಛʹڧԽֶशʢιϑτίϯϐϡʔςΟϯά෼໺ʣ

    • ʮݶఆ߹ཧੑΛඋ͑ͨਂ૚ڧԽֶशཧ࿦ͷల։ʯएखݚڀ(A)

    • ࣾձతֶश (imitation from experts ʹରͯ͠ emulation from
    pioneers Λఏএ, JNNS 2018), ࠾㕒ߦಈɾϓϩεϖΫτཧ࿦త
    ڧԽֶशΞϧΰϦζϜΛԠ༻

    • ʮਓؒೝ஌ͷదԠతಛੑΛ࣮૷ͨ͠Ձ஋ؔ਺ͷఏҊͱେن໛ίϯ
    ϐϡʔςΟϯά΁ͷԠ༻ʯएखݚڀ(B)

    View Slide

  6. Self-Introduction
    2016 Japanese academic year (April 2016 to March
    2017) in Europe
    For 11 months I live in Paris and then the last month in London.
    Jean Baratgin at CHArt (EPHE,
    Paris 8)
    Cognitive psychology of
    probability judgment and
    reasoning
    Mike Oaksford at UL Birkbeck
    Cognitive psychology of
    reasoning and argumentation
    Tatsuji Takahashi (Tokyo Denki U.) ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ ɹ ɹ Visiting Scholar at University of London, Birkbeck
    Observational causal induction as independence test under rarity assumption
    2017-01-18 Wed 7 / 73

    View Slide

  7. ਪ࿦৺ཧֶͷ࠷ۙ
    • 20ੈلʹ͓͍ͯɺਪ࿦ΛؚΊͨߴ࣍ೝ஌ʹ͸ɺ஌֮ͱͷཧ࿦
    తɾ࣮ݧతஅઈ͕Ծఆ͞Ε͍ͯͨ

    • 20ੈل຤ʢಛʹ John R. Anderson ͷ߹ཧ෼ੳ rational
    analysis (1990) Ҏ߱ʣ͔Βݱࡏ·Ͱɺߴ࣍ೝ஌΋ɺ؀ڥͷߏ
    ଄Λ൓ө͠ɺޮ཰తʹ୳ࡧ͠ɺయܕతͳঢ়گͰ͏·͍γϣʔ
    τΧοτΛ༻͍ͯҙࢥܾఆ͍ͯ͠Δ͜ͱ͕ͲΜͲΜ໌Β͔ʹ

    • ߴڮ͸2008೥Ҏ߱ɺ৚݅จɺ֬཰࿦ཧɺԋ៷ਪ࿦ɺҼՌਪ
    ࿦ͷݚڀ

    View Slide

  8. ۙ೥ͷਪ࿦৺ཧֶͷ஌ݟ
    • ਓؒ͸ɺਪ࿦λεΫͷҙຯ಺༰ʢΧόʔετʔϦʔʣΛ๨
    ΕΖͱࢦࣔͯ͠΋๨Εͳ͍ɹˠɹඇԋ៷త

    • ࿦ཧλεΫΛղ͚ͱࢦࣔͯ͠΋ؼೲɾҙࢥܾఆΛߦ͏

    • σʔλΛݟͤͯهड़౷ܭ͠Ζͱݴͬͯ΋ɺprior ΛΨϯΨ
    ϯޮ্͔ͤͨͰਪଌ౷ܭΛ͢Δ

    • ܗࣜతͳਖ਼ղͰͳ͘ɺయܕతͳ؀ڥ΁ͷదԠΛ໨ࢦ͍ͯ͠
    Δͱ͍͏ղऍ͕ɺৗʹΑΓଥ౰

    View Slide

  9. ਪ࿦ͷϞσϦϯάݴޠ
    • ਓؒͷਪ࿦͸ɺඇԋ៷తͰͳ͘ؼೲɾҙࢥܾఆతɺهड़Ͱͳ
    ͘ਪଌɺܗࣜతͰͳ͘దԠత

    • →ɹݹయ࿦ཧֶతϞσϦϯά͸ෆద౰

    • →ɹ֬཰࿦తϞσϦϯάͰे෼͔ʁ

    • ґવͱͯ͠ɺࣗવݴޠ΍ٞ࿦ͷߏ଄ʢ࿦ཧʣʹ͸ڧ͘൓Ԡɻ
    ֬཰෼෍͚ͩͰ͸ͳ͍

    • →ɹ֬཰࿦ཧֶతϞσϦϯά (2010೥Ҏ߱)

    View Slide

  10. ৚݅จͷϞσϦϯάͷॏཁੑ
    ଟ͘ͷϧʔϧ͸৚݅จʮpͳΒ͹qʯͰදݱ
    ϩϘοτͱͷର࿩ΠϯλʔϑΣΠεͰ
    ϩϘοτ͕ਓؒʹ߹ΘͤΔʹ΋ɺٯʹ΋ɺॏཁ
    ৚݅จ͸ʮӕͰ΋ໝ૝Ͱ΋ͳ͍͕ɺࣄ࣮͔Β཭
    Εͨ࿩ʯɺԾ૝ɾԾઆతࢥߟΛՄೳʹ
    ৚݅දݱΛ࣋ͨͳ͍ਓؒͷݴޠ͸ଘࡏ͠ͳ͍
    ਪ࿦ͱෆՄ෼

    View Slide

  11. ਪ࿦ͱ৚݅จ
    ਪ࿦ͷࡾܗࣜ (C. S. Peirce)
    ԋ៷ɹ
    ৚݅จΛલఏͱͯ͠࢖༻ɿࡾஈ࿦๏
    ؼೲɹ
    ৚݅จΛܗ੒ɿσʔλʢڞى৘ใͳͲʣ͔Βͷ๏ଇΛܗ੒
    ΞϒμΫγϣϯ
    ৚݅จΛḪΓɺ݁Ռ͔ΒݪҼʢԾઆʣΛ୳Δɾ࡞Δ
    deduction induction abduction
    premise 1 p p q
    premise 2 p→q q p→q
    conclusion q p→q p

    View Slide

  12. ৚݅จʹؔ͢Δࣄ࣮
    • 1966೥ͷใࠂ (Peter Wason)

    • ࣮ݧࢀՃऀʹɺτϥϯϓͷΧʔυΛɺϧʔ
    ϧʮࠇͳΒ͹ۮ਺ʯʹै͍ͬͯΔ͔൱͔ͷ
    ೋ୒Ͱ෼ྨͤ͞Δ

    • ʮࠇʯͱ͍͏લ݅Λ൱ఆ͢Δ੺͍Χʔ
    υ͸ɺೋ୒ΛٻΊͯ΋ࡾͭΊͷΧςΰ
    ϦʮͲͪΒͰ΋ͳ͍ʯͱ౴͑Δؤ݈ͳ
    ܏޲

    • ਓؒͷ৚݅จ͸ʮܽؕ৚݅จʯͱݺ͹ΕΔ
    ෼ྨʢਅཧ஋ʣ Χʔυͷྫ
    ֬ূ͢Δɾ
    ै͍ͬͯΔɾ

    ൓ূ͢Δɾ
    ै͍ͬͯͳ͍ɾ
    ِ
    ͲͪΒͰ΋ͳ͍ɾ
    ʢʁʣ

    View Slide

  13. ৚݅จͷϞσϧ
    ೋ஋࿦ཧ಺Ͱ͸දݱͰ͖ͳ͍
    ࿦ཧֶͷʮؚҙʯͱ͸ҟͳΔ
    ෆ࣮֬ੑΛ৫ΓࠐΜͰ͓Γɺ֬཰஋ʢ·ͨ͸࠷
    ௿ݶࡾ஋࿦ཧʣ͕ඞཁ
    P(pͳΒ͹q) = P(q|p)
    “The Equation” ͱݺ͹ΕΔ
    “new paradigm psychology of reasoning” ΁
    ਪ࿦͕ɺҙࢥܾఆɺ൑அɺ஌֮ɺӡಈ΁ͱܨ͕Δ

    View Slide

  14. ৚݅จͷҙຯ࿦తੑ࣭ɿ
    ਅཧ஋දλεΫɹઃఆ
    • ࣮ݧࢀՃऀʹʮp͔ͭqʯ΍ʮpͳΒ͹qʯͱ͍ͬͨจɾ৚
    ݅จΛఏࣔ

    • p (લ݅) ͱ q (ޙ݅) ʹ͍༷ͭͯʑͳέʔεΛఏࣔɺͦͷ
    έʔεͰจ͕ਅ, ِ, ͲͪΒͱ΋͍͑ͳ͍(ෆఆ)ͷͲΕͰ͋
    Δ͔Λճ౴

    • ਅཧ஋දλεΫ࣮ݧ (Qualtrics) ϦϯΫ

    View Slide

  15. ৚݅จͷҙຯ࿦తੑ࣭ɿ
    ਅཧ஋දλεΫɹ݁Ռ
    • De Finetti ͷओ؍֬཰࿦ཧֶ (1936) ͷମܥͷΈ͕࣮ࡍͷճ౴Λྑ͘આ໌

    • Baratgin, J., Politzer, G., Over, D.E., Takahashi, T., 2018. The
    Psychology of Uncertainty and Three-Valued Truth Tables. Front.
    Psychol. 9, 1479. doi:10.3389/fpsyg.2018.01479

    • ৚݅จͷҙຯ͸ɺ৚݅෇͖Ṍ͚ͱύϥϨϧ

    • ʮ໌೔੖ΕͨΒ೔ຊνʔϜ͕উͭʯʹ୭͔͕Ṍ͚ɺଞͷਓ͕ड͚ͯ
    ཱͭ

    • ໌೔ʹͳͬͯӍͳΒṌ͚͸ྲྀΕΔ (void)

    View Slide

  16. ૒৚݅จ
    • զʑͷ2018೥ͷ݁Ռͷ΋͏Ұͭͷཁ఺ɿ

    • ʮpͳΒ͹qɺ͔ͭɺqͳΒ͹pʯͱ͍͏૒৚݅จͷҙຯɿ

    • ͜Ε͸զʑͷҼՌؔ܎ʹؔ͢Δ௚ײΛද͍ͯ͠ΔͷͰ͸ͳ
    ͍͔ʁ

    • ʹTakahashi et al. (2010) ͷҼՌؼೲͷ pARIs Ϟσϧ
    P(q||p) = P(p & q|p or q) =
    P(p, q)
    P(p ∪ q)

    View Slide

  17. ҼՌਪ࿦ʢҼՌؼೲʣ
    • ೋͭͷࣄ৅͕͋Δ

    • ʮ݁Ռʯ (E: effect)

    • ʮݪҼީิʯ (C: cause)

    • ਓؒ͸ೋͭͷࣄ৅ C, E ͷڞى৘ใ͔ΒɺͲͷΑ͏ʹͦͷؒͷҼՌ
    ؔ܎Λؼೲతʹਪ࿦͢Δ͔ʁ

    • ҼՌؔ܎ͦͷ΋ͷΛ؍ଌ͢Δ͜ͱ͸Ͱ͖ͳ͍͕
    • աڈͷ਍அɾະདྷͷ༧ଌɾཧ༝ͷઆ໌ʹར༻ՄೳͰඇৗʹ༗༻

    View Slide

  18. ɹਓ޻஌ೳֶձୈճ
    ҼՌؼೲͷ࿮૊Έ
    ❖ ೋஈ֊ཧ࿦ )BUUPSJ0BLTGPSE

    ❖ ஈ֊໨ɿ؍࡯
    ❖ ແ਺ͷݪҼީิΛߜΓࠐΈɺ૬ؔ܎਺͕େ͖͍
    ΋ͷҎ֎;Δ͍མͱ͠
    ❖ ஈ֊໨ɿհೖ
    ❖ հೖʹ࣮ݧʹΑΓҼՌؔ܎Λݕূ
    ❖ ͦΕͧΕͰࢥߟͷϑϨʔϜɾϞσϧ͕ҟͳΔʢೋॏϓϩ
    ηεཧ࿦ͱύϥϨϧ)BUUPSJFUBM

    !18

    View Slide

  19. ҼՌਪ࿦ͷجຊϞσϧ
    • Delta P Ϟσϧ ʢJenkins & Ward, 1965ʣ

    • ࣮ݧ܈ͱίϯτϩʔϧ܈ͷ͕ࠩҼՌڧ౓

    • Պֶ࣮ݧͷઃఆͦͷ΋ͷ
    ΔP = P(E|C) − P(E|¬C)

    View Slide

  20. ❖ proportion of assumed-to-be rare instances [2]: ྆ऀͷ࿈ݴ(AND)
    ❖ ༧ଌ৚݅จʮC ͳΒ͹Eʯ
    ❖ ਍அ৚݅จʮE ͳΒ͹Cʯ
    ҼՌਪ࿦ͷ૒৚݅෇֬཰
    ʢ૒৚݅จͷ֬཰ʣ
    !20
    ɹɹɹ "
    [2] Takahashi, T., Kohno, Y., and Oyo, K.: in Proc. of ICCS2010, pp. 361–362 (2010)
    effect (E) No effect(¬E) पลස౓
    cause (C) N(C, E) N(C, ¬E) N(C)
    no cause (¬C) N(¬C, E) N(¬C, ¬E) N(¬C)
    पลස౓ N(E) N(¬E) N(Ω)
    C
    E
    Causal Induction
    pARIs (proportion of assumed-to-be rare instan
    (Takahashi, Oyo, & Kohno, 2010; Takahashi et al., in prep.)
    Shares the rarity assumption with DFH.
    pARIs: the probability of "if C then E, and if E then C"
    (biconditional probability of C and E)
    pARIs = P(C ∧ E|C ∨ E) =
    P(C, E)
    P(C ∨ E)
    =
    N(C, E)
    N(C ∨ E)
    We will get back to this index later in terms of conditionals and i
    relationship to other indices.

    View Slide

  21. ɹਓ޻஌ೳֶձୈճ
    ୯७ͳҼՌؼೲͷઃఆ
    ❖ ҼՌؼೲͱ͸ɿɹʮڇೕˠෲ௧ʁʯ
    !21
    ࣄྫ ݪҼީิࣄ৅ ˠɹ݁Ռࣄ৅
    /P ڇೕΛҿΜͩ ෲ௧͕ͨ͠
    /P ڇೕΛҿ·ͳ͔ͬͨ ෲ௧͕ͳ͍
    /P ڇೕΛҿ·ͳ͔ͬͨ ෲ௧͕ͨ͠
    /P ڇೕΛҿΜͩ ෲ௧͕ͨ͠
    /POɹ ɾɾɾ ɾɾɾ
    ʮݪҼ͔Β݁Ռ΁ͷҼՌͷڧ͞ʯ͸Ͳͷ͘Β͍͔

    View Slide

  22. ϝλΞφϦγε
    • Hattori & Oaksford (2007) ͷϝλ෼ੳ

    • ൴Βͷ DFH Ϟσϧ͕શ41Ϟσϧத࠷ߴͷϑΟοτ

    • pARIs ͸ͦΕΑΓ΋୯७͔ͭޡ͕ࠩখ͘͞ϑΟοτ΋ྑ͍

    • AS95 ͷΈ͸ଞͱҟͳΓɺͦ͜ͰͷΈ pARIs ΑΓ DFH ͕ྑ͍͕ɺಛघͳ࣮ݧ

    • 40ਓͷֶੜࢀՃऀશһ͕ฒ֎Εͯଟ͍શ80ͷܹࢗʹҰ͔͚࣌ؒͯճ౴ʢϝ
    λ෼ੳͷશ8࣮ݧͷશܹࢗͷ߹ܭ143ͷ͏ͪա൒਺ʣ
    AS95 BCC03.1 BCC03.3 HO07.1 HO07.2 LS00 W03.2 W03.6 R
    2 RMSE
    R
    2 RMSE’
    pARIs 0.89 0.96 0.94 0.93 0.99 0.80 0.78 0.88 0.90 9.69 0.93 8.97
    DFH 0.91 0.95 0.91 0.93 0.96 0.80 0.69 0.80 0.91 13.0 0.91 17.49
    ∆P 0.78 0.84 0.70 0.50 0.00 0.77 0.00 - 0.71 35.18 0.53 25.51
    no. of
    stimul 80 13 6 12 9 11 8 4 143 143 63 63

    View Slide

  23. ɹਓ޻஌ೳֶձୈճ
    ϝλ෼ੳ





    pA
    RIs
    D
    FH
    ΔP
    AS95
    BCC03.1
    BCC03.3
    HO07.1
    HO07.2
    LS00
    W03.2
    W03.6
    AS95 BCC03.1 BCC03.3 HO07.1 HO07.2 LS00 W03.2 W03.6
    pARIs 0.89 0.96 0.94 0.93 0.99 0.80 0.78 0.88
    DFH 0.91 0.95 0.91 0.93 0.96 0.80 0.69 0.80
    ΔP 0.78 0.84 0.70 0.50 0.00 0.77 0.00 NA
    N 80 13 6 12 9 11 8 4
    r^2 RMSE r^2* RMSE*
    pARIs 0.90 9.44 0.93 8.30
    DFH 0.91 12.16 0.91 14.85
    ΔP 0.72 17.73
    ❖ աڈͷ࣮ݧͷϝλ෼ੳ
    ❖ ֤Ϟσϧͷܾఆ܎਺
    !23
    ❖ ͢΂ͯͷܾఆ܎਺͓Αͼ3.4&
    ❖ S?'JTIFSͷ[ม׵ޙɺॏΈ෇͚ฏۉ

    View Slide

  24. ࣮ݧͷઃఆ
    • ੜσʔλ͕ͳ͍ͱLMEͳͲͰे෼ͳղੳ͕Ͱ͖ͳ͍ͷ
    Ͱ࣮ݧ

    • ΦϯϥΠϯ࣮ݧʢΫϥ΢υιʔγϯάʣ

    • ࣮ݧͷઆ໌Λදࣔͨ͠ͷͪʹΧόʔετʔϦʔͷઆ
    ໌Λఏࣔ

    • Ұఆճ਺ͷܹࢗΛϥϯμϜఏࣔͨ͠ޙɺ࣮ݧࢀՃऀ
    ͸ධՁೖྗϖʔδ΁ભҠ͠εϥΠμʔʹΑΔਪఆ஋
    Λೖྗ

    • ܁Γฦ͠

    • AWS ্ͷ࣮ݧϓϩάϥϜ
    ܹࢗ a b c d
    1 1 0 6 3
    2 1 3 3 3
    3 1 6 0 3
    4 3 1 1 5
    5 1 2 2 5
    6 0 0 7 3
    7 0 7 0 3

    View Slide

  25. ࣮ݧ݁Ռ
    ຌྫ
    ● pARIs
    ■ DFH
    ˛ ΔP
    ◆ mean
    1 2 3 4 5 6 7
    ܹࢗ
    ܾఆ܎਺ pARIs DFH DP
    ܹࢗ1-7 0.953136306369
    ܭࢉෆೳ* ܭࢉෆೳ*
    ܹࢗ1-5 0.946234780516
    0.906088860769
    0.504823039081
    ܹࢗ1-5: ∆BIC = BIC(DFH)-BIC(pARIs)=4.8
    ܹࢗ1-7: ∆BIC = BIC(DFH)-BIC(pARIs)=40.6

    View Slide

  26. pARIs ͸ԿΛ΍͍ͬͯΔͷ͔ʁ
    • ֬཰࿦ཧͰ͸ɺ૒৚݅จͷҙຯͱͯ͠͸نൣత

    • ͔͠͠ɺҼՌਪ࿦ͱͯ͠ͲͷΑ͏ͳཧ࿦తҙຯ͕͋Δͷ͔ʁ
    • ਓؒͷ௚ײ͕ҼՌ૒৚݅จతͩͱͯ͠ɺͦΕ͸ͳ͔ͥʁ

    • ʮ৯தಟͷਓ͸ੜϨόʔΛ৯΂͍ͯͨɺ͔ͭɺੜϨόʔ
    Λ৯΂͍ͯͨਓ͸৯தಟʹͳͬͨʯ

    View Slide

  27. ɹਓ޻஌ೳֶձୈճ
    ؍࡯తҼՌؼೲʹඞཁͳཁૉ
    ❖ ҼՌؔ܎ͷ͋Γͦ͏ͳࣄ৅ରͷϐοΫΞοϓ
    ❖ ૬͕ؔߴ͍΋ͷΛϐοΫΞοϓ
    ❖ ૬͕ؔ௿͍΋ͷΛ;Δ͍མͱ͢
    ❖ ૬ؔ܎਺͕ߴ͍࣌ɺҼՌؔ܎ʢC⇒Eʣ͕͋Δͱ͸ݶΒͳ͍
    ❖ ҼՌؔ܎ʢC⇒Eʣ͕͋Δ࣌ɺ૬ؔ܎਺͸ߴ͍৔߹͕ଟ͍
    ❖ CͱE͕ಠཱͰ͋Δ͔ʁʢಠཱੑݕఆʣ
    !27

    View Slide

  28. ɹਓ޻஌ೳֶձୈճ
    ۃ
    كগੑԾఆ
    ❖ كগੑԾఆ
    ❖ ਓؒ͸P(C), P(E)͕খ͍͞ͱԾఆ͢Δ
    ❖ ͋Δର৅͕ੜى͢Δ֬཰ʢখʣ
    ❖ ͋Δର৅͕ෆੜىͷ֬཰ʢେʣ
    • զʑ͕ͦͷҼՌؔ܎ʹڵຯΛ࣋ͭΑ͏ͳࣄ৅ʹ͸ͦ΋ͦ΋كগ
    ੑ͕͋Δʢੜى֬཰͕௿͍ʣͱ͍͏ࣄલ஌ࣝ
    • ʢগͳ͘ͱ΋೔ৗతʹ͸ɺ͋Γ;Εͨ͜ͱʢex. ࠭യͰͷ੖
    ΕʣͷݪҼ΍݁Ռ͸͋·Γ໰Θͳ͍ʣ
    !28

    View Slide

  29. ɹਓ޻஌ೳֶձୈճ
    كগੑԾఆͷ্Ͱͷಠཱੑݕఆ
    ❖ CͱE͕ಠཱͰ͋ΔͱԾఆ͢Δͱɺ(P(C), P(E) > 0)
    ❖ ۃكগੑԾఆN(¬C,¬E) → ∞
    ❖ ୈҰࣜɺୈೋ͕ࣜ0ʹऩଋ͢Δۙͮ͘
    ❖ ୈࡾࣜ͸ۃݶૢ࡞ޙ΋ෆมʢܭࢉՄೳʣ
    ❖ ୈࡾ͕ࣜ0ʹ͚ۙΕ͹ɺಠཱʹ͍ۙͱݴ͑Δ
    ❖ ୈࡾ͕ࣜ0͔Βԕ͚Ε͹ɺඇಠཱੑΛ࣋ͭͱݴ͑Δ
    !29
    We assume that people try to judge if C and E are independent, i.e.
    see whether the following equation holds or not:
    P(C, E) = P(C)P(E) = P(C|E)P(E|C). (8)
    In terms of frequencies,
    N(C, E)
    N(Ω)
    =
    N(C)
    N(Ω)
    ·
    N(E)
    N(Ω)
    =
    N(C, E)
    N(E)
    ·
    N(C, E)
    N(C)
    . (9)
    Under the extreme rarity assumption (XRA), N(¬C, ¬E) → ∞, the
    first and second converge to 0, while the third remains the same.
    So, as much as the third, P(C|E)P(E|C) is close to 0, C and E are
    independent. Otherwise, i.e. if P(C|E)P(E|C) is large (close to 1),
    C and E are somehow dependent.
    Tatsuji Takahashi (Tokyo Denki U.) ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ ɹ ɹ Visiting Scholar at University of London, Birkbeck and
    Observational causal induction as independence test under rarity assumption
    2017-01-18 Wed 48 / 73
    Statistical Independence indep under XRA
    We assume that people try to judge if C and E are independent, i.e
    see whether the following equation holds or not:
    P(C, E) = P(C)P(E) = P(C|E)P(E|C). (8
    n terms of frequencies,
    N(C, E)
    N(Ω)
    =
    N(C)
    N(Ω)
    ·
    N(E)
    N(Ω)
    =
    N(C, E)
    N(E)
    ·
    N(C, E)
    N(C)
    . (9
    Under the extreme rarity assumption (XRA), N(¬C, ¬E) → ∞, the
    first and second converge to 0, while the third remains the same.
    So, as much as the third, P(C|E)P(E|C) is close to 0, C and E ar
    ndependent. Otherwise, i.e. if P(C|E)P(E|C) is large (close to 1)
    C and E are somehow dependent.
    uji Takahashi (Tokyo Denki U.) ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ ɹ ɹ Visiting Scholar at University of London,
    Observational causal induction as independence test under rarity assumptio
    2017-01-18 Wed 36

    View Slide

  30. ɹਓ޻஌ೳֶձୈճ
    كগੑԾఆͷ্Ͱͷಠཱੑݕఆ
    ❖ ܾఆ܎਺ͷۃݶܗ
    ❖ P(E|C)P(C|E)͸
    ❖ DFH ͷ৐Ͱ͋Γɺ
    ❖ pARIs = P(E|CorE) ͸୯Ұͷ৚݅෇͖֬཰ͷܗࣜͷதͰ
    ͷۙࣅͱଊ͑ΒΕΔ
    ❖ ৚݅෇͖֬཰Λߟ͑Δೝ஌తෛ୲͔ΒɺQ"3*T͕ଥ౰
    !30
    limN(¬C,¬E)→∞
    φ2 = P(E|C)P(C|E).
    P(E|C)P(C|E) corresponds to the populati

    View Slide

  31. τϨʔυΦϑͷՄࢹԽ
    • γϛϡϨʔγϣϯͰɺ฼ूஂͷ૬ؔ܎਺ͷਪఆ

    • τϨʔυΦϑʹ༻͍Δࢦඪ

    ʮ஗͞ʯɿ֤Ϟσϧͷ஋͕ͦͷཧ࿦஋ʹऩଋ͢Δ

    ɹɹɹɹɹ(ޡࠩ0.01ʹऩ·Δ)·Ͱʹཁ͢Δࣄ৅ͷ਺

    ʮෆਖ਼֬ੑʯɿ֤Ϟσϧͷ෼ࢄͷࣄ৅਺200·Ͱͷฏۉ஋

    • ֤Ϟσϧʹରͯ͠0
    ʹ0.0͔Β1.0ʹ͔͚ͯ࠲ඪΛग़ྗ͠ɺ
    ಉҰͷϞσϧΛͦͷॱʹԊ͏Α͏ʹ໼ҹͰ࿈݁

    View Slide

  32. ɹਓ޻஌ೳֶձୈճ
    Sim
    !32
    pARIs infers the population correlation with averagely the highest
    precision from small data.
    Time development of average value
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ĭĨİĄ÷õ÷
    ĭĨİĄ÷õø
    ĭĨİĄ÷õù
    ĭĨİĄ÷õú
    ĭĨİĄ÷õû
    ĭĨİĄ÷õü
    ĭĨİĄ÷õý
    ĭĨİĄ÷õþ
    ĭĨİĄ÷õÿ
    ĭĨİĄ÷õĀ
    ĭĨİĄøõ÷
    φ
    0 20 40 60 80 100 0 20 40 60 80 100
    φ
    φ
    ฏۉ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ĭĨİĄ÷õ÷
    ĭĨİĄ÷õø
    ĭĨİĄ÷õù
    ĭĨİĄ÷õú
    ĭĨİĄ÷õû
    ĭĨİĄ÷õü
    ĭĨİĄ÷õý
    ĭĨİĄ÷õþ
    ĭĨİĄ÷õÿ
    ĭĨİĄ÷õĀ
    ĭĨİĄøõ÷
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ĭĨİĄ÷õ÷
    ĭĨİĄ÷õø
    ĭĨİĄ÷õù
    ĭĨİĄ÷õú
    ĭĨİĄ÷õû
    ĭĨİĄ÷õü
    ĭĨİĄ÷õý
    ĭĨİĄ÷õþ
    ĭĨİĄ÷õÿ
    ĭĨİĄ÷õĀ
    ĭĨİĄøõ÷
    DFH (N) DFH (NW)
    φ (N)
    ∆P (N)
    pARIs (N) pARIs (NW)
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ĭĨİĄ÷õ÷
    ĭĨİĄ÷õø
    ĭĨİĄ÷õù
    ĭĨİĄ÷õú
    ĭĨİĄ÷õû
    ĭĨİĄ÷õü
    ĭĨİĄ÷õý
    ĭĨİĄ÷õþ
    ĭĨİĄ÷õÿ
    ĭĨİĄ÷õĀ
    ĭĨİĄøõ÷
    φ
    0
    0 10 20 30 40 50
    1
    !
    .5
    !
    0
    1
    !
    .5
    !
    0
    1
    !
    .5
    !
    0
    mean value
    samples
    0 10 20 30 40 50
    -
    ˠ DFH is slow in
    convergence
    ˠ ∆P is fast and
    precise (but see th
    next slide)
    ˠ pARIs is fast,
    and is high only
    when φ0
    is
    high(er): scooping
    more promising
    candidate causes
    uji Takahashi (Tokyo Denki U.) ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ ɹ ɹvisiting scholar at EPHE and University of
    A simple (bi)conditional form for necessity and sufficienty: The pARIs rule
    2016-05May-03 Tue 29
    pARIs infers the population correlation with sm
    small samples are given.
    Time development of variance
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    φ
    φ
    φ
    DFH (N) DFH (NW)
    φ (N)
    ∆P (N)
    pARIs (N) pARIs (NW)
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ĭĨİĄ÷õ÷
    ĭĨİĄ÷õø
    ĭĨİĄ÷õù
    ĭĨİĄ÷õú
    ĭĨİĄ÷õû
    ĭĨİĄ÷õü
    ĭĨİĄ÷õý
    ĭĨİĄ÷õþ
    ĭĨİĄ÷õÿ
    ĭĨİĄ÷õĀ
    ĭĨİĄøõ÷
    φ
    0
    0 10 20 30 40 50
    1
    !
    .5
    !
    0
    1
    !
    .5
    !
    0
    1
    !
    .5
    !
    0
    variance
    samples
    0 10 20 30 40 50
    Tatsuji Takahashi (Tokyo Denki U.) ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ ɹ ɹvisiting
    A simple (bi)conditional form for necessit
    pARIs can always infer the
    Time development of unco
    DFH (N)
    ∆P (N)
    pARIs (N)
    ÷ ù÷ û÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    0 10 20 30 40 50
    1
    !
    .5
    !
    0
    1
    !
    .5
    !
    0
    1
    !
    .5
    !
    0
    rate of NA values
    samples
    0
    Tatsuji Takahashi (Tokyo Denki U.) ɹɹɹɹɹɹ
    A sim
    pARIs can always infer the population correlatio
    Time development of uncomputable samples
    φ
    φ
    φ
    DFH (N) DFH (NW)
    φ (N)
    ∆P (N)
    pARIs (N) pARIs (NW)
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ù÷ û÷ ý÷ ÿ÷ ø÷÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ĭĨİĄ÷õ÷
    ĭĨİĄ÷õø
    ĭĨİĄ÷õù
    ĭĨİĄ÷õú
    ĭĨİĄ÷õû
    ĭĨİĄ÷õü
    ĭĨİĄ÷õý
    ĭĨİĄ÷õþ
    ĭĨİĄ÷õÿ
    ĭĨİĄ÷õĀ
    ĭĨİĄøõ÷
    φ
    0
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    ÷ ø÷ ù÷ ú÷ û÷ ü÷
    ÷õ÷ ÷õù ÷õû ÷õý ÷õÿ øõ÷
    ĽĨijļĬ
    0 10 20 30 40 50
    1
    !
    .5
    !
    0
    1
    !
    .5
    !
    0
    1
    !
    .5
    !
    0
    rate of NA values
    samples
    0 10 20 30 40 50
    Tatsuji Takahashi (Tokyo Denki U.) ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ ɹ ɹvisiting
    A simple (bi)conditional form for necessit

    View Slide

  33. ଎͞ͱਖ਼֬͞ͷτϨʔυΦϑ
    • Ϟσϧͷൺֱํ๏͸Ұ
    ٛతͰͳ͍ɿɹ΋ͬͱ
    ΋ pARIs ͕ෆརͳج
    ४Ͱ·ͱΊͨͷ͕ӈਤ

    • DP (∆P) ͸͔ͳΓ଎͍
    ͕ਖ਼֬Ͱͳ͍

    • DH (DFH) ͸͔ͳΓ஗
    ͍͕·͋·͋ਖ਼֬

    • phi (φ) ͸஗ΊͰ·͋
    ·͋ෆਖ਼֬

    • pARIs ͸଎ͯ͘ਖ਼֬
    ਖ਼֬ɹˡˠɹෆਖ਼֬
    ଎͍ɹˡˠɹ஗͍

    View Slide

  34. ਪ࿦৺ཧֶͷ஌ݟ
    • ਓؒ͸ɺਪ࿦λεΫͷҙຯ಺༰ʢΧόʔετʔϦʔʣΛ๨
    ΕΖͱࢦࣔͯ͠΋๨Εͳ͍ɹˠɹඇԋ៷త

    • ࿦ཧλεΫΛղ͚ͱࢦࣔͯ͠΋ؼೲɾҙࢥܾఆΛߦ͏

    • σʔλΛݟͤͯهड़౷ܭ͠Ζͱݴͬͯ΋ɺprior ΛΨϯΨ
    ϯޮ্͔ͤͨͰਪଌ౷ܭΛ͢Δ

    • ܗࣜతͳਖ਼ղͰͳ͘ɺయܕతͳ؀ڥ΁ͷదԠΛ໨ࢦ͍ͯ͠
    Δͱ͍͏ղऍ͕ৗʹΑΓଥ౰

    View Slide

  35. ҼՌਪ࿦Ͱͷ஌ݟ
    • զʑ͕ͦͷҼՌؔ܎ʹڵຯΛ࣋ͭΑ͏ͳࣄ৅ʹ͸ͦ΋ͦ΋كগੑ͕͋Δ
    ʢੜى֬཰͕௿͍ʣͱ͍͏ࣄલ஌ࣝ
    • ʢ͋Γ;Εͨ͜ͱʢex. ࠭യͰͷ੖ΕʣͷݪҼ΍݁Ռ͸͋·Γ໰Θͳ
    ͍ʣ

    • ਓؒ͸ɺਪ࿦λεΫͷҙຯ಺༰ʢΧόʔετʔϦʔʣΛ๨ΕΖͱࢦࣔͯ͠
    ΋๨Εͳ͍ɹˠɹඇԋ៷తɹʢҙຯ಺༰ʹΑΓਪ࿦ͷ࿮૊ΈΛεΠονϯ
    άʣ

    • σʔλΛݟͤͯ࿦ཧλεΫɾهड़౷ܭΛղ͚ͱࢦࣔͯ͠΋prior ΛΨϯΨ
    ϯޮ্͔ͤͨͰؼೲɾҙࢥܾఆɾਪଌ౷ܭʢكগੑΛԾఆʣΛߦ͏

    • ܗࣜతͳਖ਼ղ (∆P) Ͱͳ͘ɺయܕతͳ؀ڥ΁ͷదԠ (pARIs)

    View Slide

  36. ·ͱΊ
    • ߴ࣍ೝ஌ʹࠜຊతͳ৚݅จͷཧ࿦Λݕূʢ֬཰࿦ཧϞσϧ
    ͷཱ֬ʣ

    • ؍࡯తͳҼՌਪ࿦ͷɺओ؍֬཰ͷ৚݅จཧ࿦Λ༻͍ͨϞ
    σϦϯάʹ੒ޭ

    • ΋ͬͱ΋ԑԕ͔ͬͨਪ࿦΋ɺ஌֮ͷݴޠʹͲΜͲΜ͍ۙͮ
    ͯདྷͨ

    • όΠΞεʁ

    View Slide

  37. ೝ஌όΠΞε
    • ҼՌਪ࿦Ͱ஌ΒΕͨࡉ͔͍όΠΞεͷଞ…

    • ਓؒʹ͸ҼՌؔ܎Λͻͬ͘Γฦ͢όΠΞε͕͋Δ

    • ҼՌؔ܎ͷ޲͖ΛແޮԽ

    • ͜Ε͸ɺҼՌ୳ࡧʢҼՌؔ܎ͷωοτϫʔΫͷߏ଄ਪఆʣʹ͸߹ཧత

    • ← pARIs ʹ͸޲͖͕ͳ͍

    • ౷ܭతσʔλ͔Βͷޮ཰తͳϕΠζωοτͷߏ଄ਪఆ

    • χ2 ΍ G2 ͷ୅ΘΓʹ pARIs ஋Ͱ PC ΞϧΰϦζϜͷແ޲ลઃఆ

    View Slide

  38. ·ͱΊ
    • ߴ࣍ೝ஌ʹࠜຊతͳ৚݅จͷཧ࿦Λݕূʢ֬཰࿦ཧϞσϧ
    ͷཱ֬ʣ

    • ؍࡯తͳҼՌਪ࿦ͷɺओ؍֬཰ͷ৚݅จཧ࿦Λ༻͍ͨϞ
    σϦϯάʹ੒ޭ

    • ΋ͬͱ΋ԑԕ͔ͬͨਪ࿦΋ɺ஌֮ͷݴޠʹͲΜͲΜ͍ۙͮ
    ͯདྷͨ

    • ҼՌʹؔ͢ΔόΠΞεΛઆ໌

    View Slide

  39. ༨ஊɿߴ࣍ೝ஌ͷϕΠδΞϯ
    • 2000೥୅ʹϕΠζత৺ཧֶΛཱ֬

    • Josh Tenenbaum, Nick Chater, Mike Oaksford, Tom
    Griffiths, …

    View Slide

  40. ༨ஊɿߴ࣍ೝ஌ͷϕΠδΞϯ
    • 2000೥୅ʹϕΠζత৺ཧֶΛཱ֬

    • Nick Chater’s The Mind is Flat (2018)


    View Slide

  41. References
    • Hattori, M., Oaksford, M., 2007. Adaptive Non-Interventional
    Heuristics for Covariation Detection in Causal Induction: Model
    Comparison and Rational Analysis. Cogn. Sci. 31, 765–814. doi:
    10.1080/03640210701530755

    • Wason, P. C. (1966). “Reasoning,” in New Horizons in
    Psychology, ed B. Foss (Harmondsworth: Penguin Books), 135–
    151.

    • Over, D. E., and Baratgin, J. (2017). “The ”defective“ truth table:
    its past, present, and future,” in The Thinking Mind: A Festschrift
    for Ken Manktelow, eds N. Galbraith, E. Lucas, and D. E. Over
    (London: Psychology Press), 15–28.


    View Slide

  42. References
    • Baratgin, J., Politzer, G., Over, D.E., Takahashi, T., 2018. The Psychology of Uncertainty and Three-Valued
    Truth Tables. Front. Psychol. 9, 1479. doi:10.3389/fpsyg.2018.01479

    • Hattori, M., Over, D.E., Hattori, I., Takahashi, T., Baratgin, J., 2016. Dual frames in causal reasoning and
    other types of thinking. The Thinking Mind: A Festschrift for Ken Manktelow, 98–114. doi:
    10.4324/9781315676074

    • Hattori, M., Over, D.E., Hattori, I., Takahashi, T., Baratgin, J., 2016. Dual frames in causal reasoning and
    other types of thinking. Think. Mind A Festschrift Ken Manktelow 98–114. doi:10.4324/9781315676074

    • Hattori, I., Hattori, M., Over, D.E., Takahashi, T., Baratgin, J., 2017. Dual frames for causal induction: the
    normative and the heuristic. Think. Reason. 23, 292–317. doi:10.1080/13546783.2017.1316314

    • Nakamura, H., Shao, J., Baratgin, J., Over, D.E., Takahashi, T., Yama, H., 2018. Understanding conditionals
    in the east: A replication study of Politzer et al. (2010) With Easterners. Front. Psychol. 9, 505. doi:10.3389/
    fpsyg.2018.00505

    • Takahashi, T., Kohno, Y., & Oyo, K. (2010). Causal induction heuristics as proportion of assumed-to-be rare
    Instances (pARIs). In Proceedings of the 7th International Conference on Cognitive Science (ICCS2010) (pp.
    361–362)

    • ߴڮୡೋ, େ༻ݿஐ, ۄ଄ߊ߂, & ԣ઒७و. (2017). كগੑԾఆͷԼͰͷඇಠཱੑͷ൑அͱͯ͠ͷਓؒͷ؍࡯త
    ҼՌਪ࿦. JSAI 2017 (2017೥౓ਓ޻஌ೳֶձશࠃେձ(ୈ31ճ)) ༧ߘू. http://doi.org/10.14931/bsd.1509

    • Takahashi, T., Oyo, K., Tamatsukuri, A. Correlation Detection with and without the Theory of Conditionals: A
    model update of Hattori & Oaksford (2007). A book chapter proposed, on BioRxiv, doi:10.1101/247742.

    View Slide

  43. Papers in preparation
    • Higuchi, K., Oyo, K., Yokokawa, J., Takahashi, T., (in prep.). Adaptive
    rationality of the pARIs rule in observational causal induction (tentative).

    • Sato, A., Takahashi, T., (in prep.). Compounds of conditionals in
    probability judgments (tentative).

    • Observational Causal Induction as Independence Test Under Rarity
    Assumption

    • Takarada, Y., Oyo, K., Yokokawa, J., Takahashi, T., (in prep.) Causal
    induction with defective data and defective biconditionals (tentative).

    • Yoshizawa, H., Takahashi, T., (in prep.). Logical property of Japanese
    conditionals (tentative).

    View Slide

  44. ɹਓ޻஌ೳֶձୈճ
    ٞ࿦ɿෆੜىͱ͸ʁ
    ❖ ෆੜىͷ਺্͑͛͸࣌ʹ͸ෆ֬ఆ
    ❖ ΩʔΛճ͢(C)ͱΤϯδϯ͕͔͔Δ (E)
    ❖ ʮΩʔΛճͣ͞ɼ͔ͭΤϯδϯ͕͔͔Βͳ͔ͬͨʯ
    ❖ Χ΢ϯτࣗମ͸ϑϨʔϛϯάʹΑͬͯՄೳ
    ❖ զʑ͸ීஈϑϨʔϛϯάΛݫີʹܾΊ͍ͯΔ͔
    ❖ ʮ֬཰Ϟσϧʯͷܾఆʹ͸ඞཁෆՄܽ
    ❖ ݫີͳϑϨʔϛϯάΛܾΊΔ͜ͱͦ͜ɺੈք΍ண໨ࣄ৅
    ΁ͷհೖͰ͸ͳ͍͔
    !44
    *Mike Oaksford, personal communication, 2017 ೥ 2 ݄ 13 ೔

    View Slide