Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Chainerを使ったらカノジョができたお話
Search
tereka114
March 16, 2022
Programming
0
160
Chainerを使ったらカノジョができたお話
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.3k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.5k
KDD2023学会参加報告
tereka114
2
540
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
360
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
170
Jupyter Notebookを納品した話
tereka114
0
370
Multi Scale Recognition with DAG-CNNs
tereka114
0
120
How to use scikit-image for data augmentation
tereka114
0
210
Other Decks in Programming
See All in Programming
MCP with Cloudflare Workers
yusukebe
2
300
コンテナをたくさん詰め込んだシステムとランタイムの変化
makihiro
1
190
サーバーゆる勉強会 DBMS の仕組み編
kj455
1
260
Kaigi on Railsに初参加したら、その日にLT登壇が決定した件について
tama50505
0
140
rails newと同時に型を書く
aki19035vc
5
680
週次リリースを実現するための グローバルアプリ開発
tera_ny
1
950
watsonx.ai Dojo #6 継続的なAIアプリ開発と展開
oniak3ibm
PRO
0
140
.NETでOBS Studio操作してみたけど…… / Operating OBS Studio by .NET
skasweb
0
110
Findy Team+ Awardを受賞したかった!ベストプラクティス応募内容をふりかえり、開発生産性向上もふりかえる / Findy Team Plus Award BestPractice and DPE Retrospective 2024
honyanya
0
130
ある日突然あなたが管理しているサーバーにDDoSが来たらどうなるでしょう?知ってるようで何も知らなかったDDoS攻撃と対策 #phpcon.2024
akase244
2
7.7k
KubeCon + CloudNativeCon NA 2024 Overviewat Kubernetes Meetup Tokyo #68 / amsy810_k8sjp68
masayaaoyama
0
300
今年のアップデートで振り返るCDKセキュリティのシフトレフト/2024-cdk-security-shift-left
tomoki10
0
350
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
The Invisible Side of Design
smashingmag
299
50k
The Cost Of JavaScript in 2023
addyosmani
46
7.2k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
A designer walks into a library…
pauljervisheath
205
24k
How GitHub (no longer) Works
holman
312
140k
Bash Introduction
62gerente
610
210k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Adopting Sorbet at Scale
ufuk
74
9.1k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Producing Creativity
orderedlist
PRO
343
39k
Transcript
Chainerを使ったら カノジョができたお話 @tereka114
自己紹介 1. 山本 大輝(@tereka114) 2. Acroquest Technology 株式会社 3. Chainer
Meetup 初参加 4. のんびりしているエンジニアの日記 5. 最近、雑誌記事書きました。 1. Interface 3月号
クリスマスに近いある日
カノジョが欲しい。
そう思っていた、 しかし、そんな簡単に できるはずがない。
ならば、作れば良い。
カノジョを作りました。
Chainerで
カノジョのコンセプト 1. カノジョを構成すれば良い。 1. そもそもカノジョとは何か 2. 理想的なカノジョとは何か
カノジョのコンセプト 1. カノジョを構成すれば良い。 1. そもそもカノジョとは何か 2. 理想的なカノジョとは何か 2. 理想的なカノジョ=癒やし 1.
理想的なカノジョの要素は会話でないか・・
カノジョを作る方法 1. ニューラルネットワークを作る 1. Neural Conversational Model 2. データセットを作る 1.
カノジョとの会話用のデータセットを作る。 3. Slackに載せる 1. Slackで実用的なカノジョを!
システム構成 ①話しかける ④応答を返す ③応答を返す ②話し かける 私
Neural Conversation Model 1. Seq2seqをベースをした会話モデル 1. 入力を話しかけた文章、出力を応答とする会話 モデル 2. Seq2seqは翻訳でよく利用されているモデル
3. 入力の分割は形態素解析を使っている。
Neural Conversation Model
Neural Conversation Model 話しかける文章 回答
Chainerを使った理由 1. 動的ネットワークを組みやすい。 1. 他のライブラリと比べて、RNN作りやすい。 2. 比較的書き慣れていた。
データセット作成 1. ラノベかなにかを読み、手動で会話を集める。 1. 人間の手に限界が・・・ 2. というもののいい解法を見つけられず、結局 手でやった。 1. 次回やるときは特定のカテゴリタグを使ってやり
たい。 3. 1対1の会話文が1つのデータ
Slack 1. 作ったBotをSlackと連携します。 2. PythonにSlack連携させるライブラリがあるので、使 います。 1. インストールは「pip install slackbot」
2. 話しかけるとそれに応じてリプライを返せる仕組み
本Botの工夫ポイント 1. 名前を呼んでくれます。 1. 自分の名前ではない名前で呼ばれても嬉しくな いので、名前を呼ぶようにしました。
None
課題 1. とにかくデータセットが少ない。 1. 増やす方法を考える必要があり 2. 時々知らない単語が混じると精度が悪化する。 1. Beam searchを使うと良くなる・・・(未実装)
Demo