Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to use scikit-image for data augmentation
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
tereka114
March 16, 2022
Programming
0
300
How to use scikit-image for data augmentation
第33回コンピュータビジョン勉強会の資料です。内容は、scikit-imageを使ったData Augmentationの方法です。
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.8k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.7k
KDD2023学会参加報告
tereka114
2
640
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
430
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
240
Jupyter Notebookを納品した話
tereka114
0
520
Multi Scale Recognition with DAG-CNNs
tereka114
0
170
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
tereka114
0
300
Other Decks in Programming
See All in Programming
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
260
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
430
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
170
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
5.8k
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
390
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
430
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
Python札幌 LT資料
t3tra
7
1.1k
CSC307 Lecture 06
javiergs
PRO
0
670
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
280
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
400
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
331
21k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Code Review Best Practice
trishagee
74
20k
Everyday Curiosity
cassininazir
0
120
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
130
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
280
BBQ
matthewcrist
89
10k
Skip the Path - Find Your Career Trail
mkilby
0
50
The SEO identity crisis: Don't let AI make you average
varn
0
57
30 Presentation Tips
portentint
PRO
1
190
Transcript
How to use scikit-image for data augmentation @tereka114
自己紹介 1. 山本 大輝(@tereka114) 2. のんびりしているエンジニアの日記(Blog) 1. http://nonbiri-tereka.hatenablog.com/ 3. Acroquest
Technology株式会社 4. データ分析のお仕事しています。 1. 画像処理、自然言語処理
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
Scikit-imageとは何か? 1. Scikit-imageは画像処理のライブラリ。 2. 因みにscikitとは、scipy toolkitを示していて、 特にこのライブラリは広く使われている。 3. 実は気にしていないだけで、案外バックエン ドでは動いていることがある。
CaffeのData Augmentation
Scikit-imageの良い点 1. Installが簡単 1. Sudo pip install scikit-image 2. 基本的な操作はNumpyの関数で可能
1. 簡単に行列演算を実施することができる。
Scikit-imageでできること 1. 画像の入出力(当たり前) 2. 画像の変換 1. Histogram normalization、Affine Transform 3.
特徴量抽出 1. Local Binary Pattern, Histogram of Orientation
Scikit-imageでできること 1. 画像の入出力(当たり前) 2. 画像の変換 1. Histogram normalization、Affine Transform 3.
特徴量抽出 1. Local Binary Pattern, Histogram of Orientation
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
Data Augmentation 1. データに対して情報を加えること。 2. 画像に対しては、元画像に対して回転、平 行移動、スケール変更などの情報を加える。 3. Kaggleではよく使われる方法 4.
AlexNetの元論文でも使われている。
Example of Data Augmentation 引用元:https://cesarlaurent.wordpress.com/2015/02/19/29/
Example of Data Augmentation 引用元:https://cesarlaurent.wordpress.com/2015/02/19/29/
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
画像の読み込み 1. skimage.io.imreadでファイル名を第一引数 に使うと可能です。 2. 読みこんだ画像はnumpy.arrayなので行列 計算はそのまま可能 3. OpenCVと併用する場合は注意、行列の並び 順はRGB。(OpenCVはBGR)
画像の読み込み 1. Scikit-imageでの画像を読み込み
アフィン変換 1. 平行移動を伴う線形変換のこと 1. 「並行移動」・「回転」・「拡大・縮小」が可能 2. パラメータを与えるだけで簡単にできる。 1. Scale:スケールの変換 2.
Rotate:回転 3. Translated:平行移動
アフィン変換 Affine変換の行列を作成 rotateはradian 線形変換
ヒストグラム正規化 1. ヒストグラムを平滑化することによって、コン トラストを調整することができる。 1. このコントラスト調整によって、精度がよくな ることも・・・
ヒストグラム正規化
ヒストグラム正規化
Numpyの便利関数紹介 1. np.random.randomとnp.random.binomialを 組み合わせると、ノイズが作れる。 2. Transpose関数で転置できる。 1. 多くのDeepLearningライブラリでは、 channel,height,widthの順番を求められる。 2.
scikit-imageの画像はheight,width,channel 3. img.transpose(2,0,1)とすると期待する入力にな る。
Numpyの便利関数紹介 1. whereを使うと一定以上の値を抽出して、定 数に変換など可能 1. 値が0.5より高い箇所を1とする。 1. x[np.where(x > 0.5)]
= 1 2. 画像自体はnumpyの行列の為、以下の方法 で、画像を切り取ることが可能 1. img = img[10:10 + 224]
まとめ 1. scikit-imageでData Augmentationをやってみ ようの紹介です。 2. Data Augmentationは画像処理(特に認識) で使われ、成果をあげている。 3.
Scikit-imageで、簡単にできる。