Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to use scikit-image for data augmentation
Search
tereka114
March 16, 2022
Programming
0
270
How to use scikit-image for data augmentation
第33回コンピュータビジョン勉強会の資料です。内容は、scikit-imageを使ったData Augmentationの方法です。
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.6k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.6k
KDD2023学会参加報告
tereka114
2
590
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
400
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
210
Jupyter Notebookを納品した話
tereka114
0
460
Multi Scale Recognition with DAG-CNNs
tereka114
0
150
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
tereka114
0
270
Other Decks in Programming
See All in Programming
List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfold' relates to 'iterate'"
philipschwarz
PRO
0
190
Perlで痩せる
yuukis
1
680
FormFlow - Build Stunning Multistep Forms
yceruto
1
150
Go Modules: From Basics to Beyond / Go Modulesの基本とその先へ
kuro_kurorrr
0
110
💎 My RubyKaigi Effect in 2025: Top Ruby Companies 🌐
yasulab
PRO
1
130
eBPFを用いたAIネットワーク監視システム論文の実装 / eBPF Japan Meetup #4
yuukit
3
750
CSC307 Lecture 17
javiergs
PRO
0
110
Benchmark
sysong
0
130
DroidKnights 2025 - 다양한 스크롤 뷰에서의 영상 재생
gaeun5744
1
110
社内での開発コミュニティ活動とモジュラーモノリス標準化事例のご紹介/xPalette and Introduction of Modular monolith standardization
m4maruyama
0
120
セキュリティマネジャー廃止とクラウドネイティブ型サンドボックス活用
kazumura
1
170
F#で自在につくる静的ブログサイト - 関数型まつり2025
pizzacat83
0
290
Featured
See All Featured
Building Applications with DynamoDB
mza
95
6.4k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Statistics for Hackers
jakevdp
799
220k
Embracing the Ebb and Flow
colly
86
4.7k
Faster Mobile Websites
deanohume
307
31k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.8k
The World Runs on Bad Software
bkeepers
PRO
68
11k
Thoughts on Productivity
jonyablonski
69
4.7k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.3k
Transcript
How to use scikit-image for data augmentation @tereka114
自己紹介 1. 山本 大輝(@tereka114) 2. のんびりしているエンジニアの日記(Blog) 1. http://nonbiri-tereka.hatenablog.com/ 3. Acroquest
Technology株式会社 4. データ分析のお仕事しています。 1. 画像処理、自然言語処理
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
Scikit-imageとは何か? 1. Scikit-imageは画像処理のライブラリ。 2. 因みにscikitとは、scipy toolkitを示していて、 特にこのライブラリは広く使われている。 3. 実は気にしていないだけで、案外バックエン ドでは動いていることがある。
CaffeのData Augmentation
Scikit-imageの良い点 1. Installが簡単 1. Sudo pip install scikit-image 2. 基本的な操作はNumpyの関数で可能
1. 簡単に行列演算を実施することができる。
Scikit-imageでできること 1. 画像の入出力(当たり前) 2. 画像の変換 1. Histogram normalization、Affine Transform 3.
特徴量抽出 1. Local Binary Pattern, Histogram of Orientation
Scikit-imageでできること 1. 画像の入出力(当たり前) 2. 画像の変換 1. Histogram normalization、Affine Transform 3.
特徴量抽出 1. Local Binary Pattern, Histogram of Orientation
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
Data Augmentation 1. データに対して情報を加えること。 2. 画像に対しては、元画像に対して回転、平 行移動、スケール変更などの情報を加える。 3. Kaggleではよく使われる方法 4.
AlexNetの元論文でも使われている。
Example of Data Augmentation 引用元:https://cesarlaurent.wordpress.com/2015/02/19/29/
Example of Data Augmentation 引用元:https://cesarlaurent.wordpress.com/2015/02/19/29/
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
画像の読み込み 1. skimage.io.imreadでファイル名を第一引数 に使うと可能です。 2. 読みこんだ画像はnumpy.arrayなので行列 計算はそのまま可能 3. OpenCVと併用する場合は注意、行列の並び 順はRGB。(OpenCVはBGR)
画像の読み込み 1. Scikit-imageでの画像を読み込み
アフィン変換 1. 平行移動を伴う線形変換のこと 1. 「並行移動」・「回転」・「拡大・縮小」が可能 2. パラメータを与えるだけで簡単にできる。 1. Scale:スケールの変換 2.
Rotate:回転 3. Translated:平行移動
アフィン変換 Affine変換の行列を作成 rotateはradian 線形変換
ヒストグラム正規化 1. ヒストグラムを平滑化することによって、コン トラストを調整することができる。 1. このコントラスト調整によって、精度がよくな ることも・・・
ヒストグラム正規化
ヒストグラム正規化
Numpyの便利関数紹介 1. np.random.randomとnp.random.binomialを 組み合わせると、ノイズが作れる。 2. Transpose関数で転置できる。 1. 多くのDeepLearningライブラリでは、 channel,height,widthの順番を求められる。 2.
scikit-imageの画像はheight,width,channel 3. img.transpose(2,0,1)とすると期待する入力にな る。
Numpyの便利関数紹介 1. whereを使うと一定以上の値を抽出して、定 数に変換など可能 1. 値が0.5より高い箇所を1とする。 1. x[np.where(x > 0.5)]
= 1 2. 画像自体はnumpyの行列の為、以下の方法 で、画像を切り取ることが可能 1. img = img[10:10 + 224]
まとめ 1. scikit-imageでData Augmentationをやってみ ようの紹介です。 2. Data Augmentationは画像処理(特に認識) で使われ、成果をあげている。 3.
Scikit-imageで、簡単にできる。