Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How we built an AI code reviewer with serverles...
Search
Yan Cui
February 12, 2025
Technology
0
100
How we built an AI code reviewer with serverless and Bedrock
Slides for my talk at the Serverless London meetup on 12-Feb-2025
Yan Cui
February 12, 2025
Tweet
Share
More Decks by Yan Cui
See All by Yan Cui
Money-saving tips for the frugal serverless developer (AWS Community Summit)
theburningmonk
1
180
Money-saving tips for the frugal serverless developer
theburningmonk
1
760
Why the fuzz about serverless (with CompassDigital)
theburningmonk
0
100
Money-saving tips for the frugal serverless developer
theburningmonk
0
120
Efficient patterns for serverless development (AWS Summit London)
theburningmonk
0
140
7 ways to solve Lambda cold starts
theburningmonk
0
63
Saving Money on Serverless: Common Mistakes and How to Avoid Them
theburningmonk
0
58
3 Ways to Improve Serverless Performance
theburningmonk
0
46
Smart and efficient ways to test serverless architectures
theburningmonk
1
290
Other Decks in Technology
See All in Technology
東京海上日動におけるセキュアな開発プロセスの取り組み
miyabit
0
220
人と生成AIの協調意思決定/Co‑decision making by people and generative AI
moriyuya
0
240
マルチモーダル基盤モデルに基づく動画と音の解析技術
lycorptech_jp
PRO
4
390
ファインディにおける Dataform ブランチ戦略
hiracky16
0
240
AIに全任せしないコーディングとマネジメント思考
kikuchikakeru
0
360
[MIRU25] NaiLIA: Multimodal Retrieval of Nail Designs Based on Dense Intent Descriptions
keio_smilab
PRO
1
170
【CEDEC2025】大規模言語モデルを活用したゲーム内会話パートのスクリプト作成支援への取り組み
cygames
PRO
1
600
「AI駆動開発」のボトルネック『言語化』を効率化するには
taniiicom
1
230
地域コミュニティへの「感謝」と「恩返し」 / 20250726jawsug-tochigi
kasacchiful
0
120
Tableau API連携の罠!?脱スプシを夢見たはずが、逆に依存を深めた話
cuebic9bic
2
180
帳票構造化タスクにおけるLLMファインチューニングの性能評価
yosukeyoshida
1
210
公開初日に個人環境で試した Gemini CLI 体験記など / Gemini CLI実験レポート
you
PRO
3
1.4k
Featured
See All Featured
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
332
22k
Building Applications with DynamoDB
mza
95
6.5k
Into the Great Unknown - MozCon
thekraken
40
1.9k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
A Tale of Four Properties
chriscoyier
160
23k
YesSQL, Process and Tooling at Scale
rocio
173
14k
4 Signs Your Business is Dying
shpigford
184
22k
Speed Design
sergeychernyshev
32
1k
BBQ
matthewcrist
89
9.8k
Transcript
How we built an AI Code Reviewer with Serverless and
Bedrock
Yan Cui http://theburningmonk.com @theburningmonk AWS user since 2010
Yan Cui http://theburningmonk.com @theburningmonk running serverless in production since 2016
Developer Advocate @ Yan Cui http://theburningmonk.com @theburningmonk
Yan Cui http://theburningmonk.com @theburningmonk independent consultant
None
evolua.io Demo
Architecture
API Gateway EventBridge Webhook
API Gateway DynamoDB Bedrock EventBridge Webhook
API Gateway DynamoDB Bedrock EventBridge Webhook
API Gateway DynamoDB Bedrock EventBridge Webhook evolua.io
None
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io
None
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser
Challenges (for an AI code reviewer) Handling sensitive data for
customers
Challenges (for an AI code reviewer) Large fi les. Large
PRs with many fi les. Handling sensitive data for customers
Why Bedrock?
Security
Security Data is encrypted at rest.
www.wiz.io/blog/wiz-research-uncovers-exposed-deepseek-database-leak
aws.amazon.com/bedrock/faqs
Security Data is encrypted at rest. Inputs & Outputs are
not shared with model providers. Inputs & Outputs are not used to train other models.
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser Fallback
Primary
privacy.anthropic.com/en/articles/7996885-how-do-you-use-personal-data-in-model-training
Serverless
Serverless Usage-based AND provisioned throughput pricing
None
None
1M Input Tokens 1M Output Tokens $0.14 v3 r1 $0.28
$0.55 $2.19 Sonnet $3.75 $15.0 Haiku $0.80 $4.00
Very cost ef fi cient!
Very cost ef fi cient! Data is stored in China.
Very cost ef fi cient! Data is stored in China.
Data might be used to train other models.
www.wiz.io/blog/wiz-research-uncovers-exposed-deepseek-database-leak
Very cost ef fi cient! Data is stored in China.
Data might be used to train other models. Operationally immature.
None
No token-based pricing yet
No token-based pricing yet “GPU-based instance type like ml.p5e.48xlarge is
recommended”
ml.p5e.48xlarge 💰💰💰💰💰💰💰💰💰💰 💰💰💰💰💰💰💰💰💰💰 💰💰💰💰💰💰💰💰💰💰 💰💰💰💰💰💰💰💰💰💰 💰💰💰💰💰💰💰💰
Other capabilities Guardrails Knowledge base (managed RAG) Agents Cross-region inference
Model evaluations
None
None
None
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser Fallback
Primary
Lessons
Webhook
Webhook Analyse changes
Webhook Analyse changes Feedback
Condensed view…
None
Lambda timed out after 15 mins
Succeeded on automatic retry
Webhook Analyse changes Feedback LLM limits GitHub limits AWS limits
Lesson: AI is 10% of the problem
None
Reasoning ability
Context window Max response tokens API rate limit Reasoning ability
Context window Max response tokens API rate limit Reasoning ability
Cost Performance
Context window Max response tokens API rate limit Reasoning ability
Cost Performance Important selection criteria for LLMs
Doing cool AI stuff! Working around AI limits
Doing cool AI stuff! Working around AI limits Stop playing
with my bowl…
Context window Max response tokens API rate limit Reasoning ability
Cost Performance
Claude 3.5 Sonnet’s default throughput is 50 per minute
Claude 3.5 Sonnet’s default throughput is 50 per minute Can
be raised to 1,000 per minute
Claude 3.5 Sonnet’s default throughput is 50 per minute Can
be raised to 1,000 per minute Bedrock has cross- region inference
Mitigate API rate limit Raise account limits. Use Bedrock cross-region
inference.
Mitigate API rate limit Raise account limits. Use Bedrock cross-region
inference. Limit no. of parallel requests per PR.
Mitigate API rate limit Raise account limits. Use Bedrock cross-region
inference. Limit no. of parallel requests per PR. Fallback to Anthropic & less powerful models (Claude 3 Sonnet, Claude 3.5 Haiku)
Future work: incorporate other models (Nova, DeepSeek, etc.)
Future work: incorporate other models (Nova, DeepSeek, etc.) Also good
for cost control!
Lesson: LLMs are still quite expensive
None
Dif fi cult to build a sustainable and competitive business
Cost control Only analyse changed lines.
Cost control Only analyse changed lines. Good for cost control
Good for UX
Cost control Only analyse changed lines. Limit free users to
few PRs per month.
API Gateway DynamoDB Bedrock EventBridge Webhook
API Gateway DynamoDB Bedrock EventBridge Webhook Built-in retries & DLQ
Lambda timed out after 15 mins
Lambda timed out after 15 mins Reprocess fi les on
retry…
Lambda timed out after 15 mins Reprocess fi les on
retry… Duplicated side- effects (e.g. Github comments)
Cost control Only analyse changed lines. Limit free users to
few PRs per month. Use checkpoints to avoid re-processing fi les on retries
const issues = await executeIdempotently( `${event-id}-${filename}-analyze`, () => analyzeFile(file) );
... await executeIdempotently( `${event-id}-${filename}-add-gh-comment`, () => addReviewComment(filename, comment) );
Webhook Analyse changes Feedback Why not Step Functions?
Webhook Analyse changes Feedback Why not Step Functions? Checkpoints is
just easier 🤷
Lesson: Latency is a challenge
Models take 10s of seconds to analyse each fi le
Wasted CPU cycles in Lambda
Future work: try other models
Future work: make use of these CPU cycles
Lesson: Be ware of hallucinations
“Give me JSON in this format”
None
“Give me JSON in this format” “Nope!”
None
Non-existent codes, invalid URLs
Non-existent line numbers
Future works
Go to evolua.io to try it out. We’d love your
feedback!
Questions?