$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How we built an AI code reviewer with serverles...
Search
Yan Cui
February 12, 2025
Technology
0
130
How we built an AI code reviewer with serverless and Bedrock
Slides for my talk at the Serverless London meetup on 12-Feb-2025
Yan Cui
February 12, 2025
Tweet
Share
More Decks by Yan Cui
See All by Yan Cui
Money-saving tips for the frugal serverless developer (AWS Community Summit)
theburningmonk
1
200
Money-saving tips for the frugal serverless developer
theburningmonk
1
780
Why the fuzz about serverless (with CompassDigital)
theburningmonk
0
110
Money-saving tips for the frugal serverless developer
theburningmonk
0
140
Efficient patterns for serverless development (AWS Summit London)
theburningmonk
0
160
7 ways to solve Lambda cold starts
theburningmonk
0
69
Saving Money on Serverless: Common Mistakes and How to Avoid Them
theburningmonk
0
65
3 Ways to Improve Serverless Performance
theburningmonk
0
50
Smart and efficient ways to test serverless architectures
theburningmonk
1
300
Other Decks in Technology
See All in Technology
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
0
150
re:Invent2025 コンテナ系アップデート振り返り(+CloudWatchログのアップデート紹介)
masukawa
0
300
AWS Trainium3 をちょっと身近に感じたい
bigmuramura
1
120
たかが特別な時間の終わり / It's Only the End of Special Time
watany
29
7.9k
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
110
手動から自動へ、そしてその先へ
moritamasami
0
280
regrowth_tokyo_2025_securityagent
hiashisan
0
160
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
110
re:Invent 2025 ふりかえり 生成AI版
takaakikakei
1
170
【CEDEC+KYUSHU2025】学生・若手必見!テクニカルアーティスト 大全 ~仕事・スキル・キャリアパス、TAの「わからない」を徹底解剖~
cygames
PRO
0
140
Playwright x GitHub Actionsで実現する「レビューしやすい」E2Eテストレポート
kinosuke01
0
320
最近のLinux普段づかいWaylandデスクトップ元年
penguin2716
1
660
Featured
See All Featured
A Tale of Four Properties
chriscoyier
162
23k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Music & Morning Musume
bryan
46
7k
Being A Developer After 40
akosma
91
590k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Producing Creativity
orderedlist
PRO
348
40k
Balancing Empowerment & Direction
lara
5
790
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
92
Transcript
How we built an AI Code Reviewer with Serverless and
Bedrock
Yan Cui http://theburningmonk.com @theburningmonk AWS user since 2010
Yan Cui http://theburningmonk.com @theburningmonk running serverless in production since 2016
Developer Advocate @ Yan Cui http://theburningmonk.com @theburningmonk
Yan Cui http://theburningmonk.com @theburningmonk independent consultant
None
evolua.io Demo
Architecture
API Gateway EventBridge Webhook
API Gateway DynamoDB Bedrock EventBridge Webhook
API Gateway DynamoDB Bedrock EventBridge Webhook
API Gateway DynamoDB Bedrock EventBridge Webhook evolua.io
None
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io
None
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser
Challenges (for an AI code reviewer) Handling sensitive data for
customers
Challenges (for an AI code reviewer) Large fi les. Large
PRs with many fi les. Handling sensitive data for customers
Why Bedrock?
Security
Security Data is encrypted at rest.
www.wiz.io/blog/wiz-research-uncovers-exposed-deepseek-database-leak
aws.amazon.com/bedrock/faqs
Security Data is encrypted at rest. Inputs & Outputs are
not shared with model providers. Inputs & Outputs are not used to train other models.
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser Fallback
Primary
privacy.anthropic.com/en/articles/7996885-how-do-you-use-personal-data-in-model-training
Serverless
Serverless Usage-based AND provisioned throughput pricing
None
None
1M Input Tokens 1M Output Tokens $0.14 v3 r1 $0.28
$0.55 $2.19 Sonnet $3.75 $15.0 Haiku $0.80 $4.00
Very cost ef fi cient!
Very cost ef fi cient! Data is stored in China.
Very cost ef fi cient! Data is stored in China.
Data might be used to train other models.
www.wiz.io/blog/wiz-research-uncovers-exposed-deepseek-database-leak
Very cost ef fi cient! Data is stored in China.
Data might be used to train other models. Operationally immature.
None
No token-based pricing yet
No token-based pricing yet “GPU-based instance type like ml.p5e.48xlarge is
recommended”
ml.p5e.48xlarge 💰💰💰💰💰💰💰💰💰💰 💰💰💰💰💰💰💰💰💰💰 💰💰💰💰💰💰💰💰💰💰 💰💰💰💰💰💰💰💰💰💰 💰💰💰💰💰💰💰💰
Other capabilities Guardrails Knowledge base (managed RAG) Agents Cross-region inference
Model evaluations
None
None
None
API Gateway DynamoDB Bedrock EventBridge Webhook AppSync evolua.io Authoriser Fallback
Primary
Lessons
Webhook
Webhook Analyse changes
Webhook Analyse changes Feedback
Condensed view…
None
Lambda timed out after 15 mins
Succeeded on automatic retry
Webhook Analyse changes Feedback LLM limits GitHub limits AWS limits
Lesson: AI is 10% of the problem
None
Reasoning ability
Context window Max response tokens API rate limit Reasoning ability
Context window Max response tokens API rate limit Reasoning ability
Cost Performance
Context window Max response tokens API rate limit Reasoning ability
Cost Performance Important selection criteria for LLMs
Doing cool AI stuff! Working around AI limits
Doing cool AI stuff! Working around AI limits Stop playing
with my bowl…
Context window Max response tokens API rate limit Reasoning ability
Cost Performance
Claude 3.5 Sonnet’s default throughput is 50 per minute
Claude 3.5 Sonnet’s default throughput is 50 per minute Can
be raised to 1,000 per minute
Claude 3.5 Sonnet’s default throughput is 50 per minute Can
be raised to 1,000 per minute Bedrock has cross- region inference
Mitigate API rate limit Raise account limits. Use Bedrock cross-region
inference.
Mitigate API rate limit Raise account limits. Use Bedrock cross-region
inference. Limit no. of parallel requests per PR.
Mitigate API rate limit Raise account limits. Use Bedrock cross-region
inference. Limit no. of parallel requests per PR. Fallback to Anthropic & less powerful models (Claude 3 Sonnet, Claude 3.5 Haiku)
Future work: incorporate other models (Nova, DeepSeek, etc.)
Future work: incorporate other models (Nova, DeepSeek, etc.) Also good
for cost control!
Lesson: LLMs are still quite expensive
None
Dif fi cult to build a sustainable and competitive business
Cost control Only analyse changed lines.
Cost control Only analyse changed lines. Good for cost control
Good for UX
Cost control Only analyse changed lines. Limit free users to
few PRs per month.
API Gateway DynamoDB Bedrock EventBridge Webhook
API Gateway DynamoDB Bedrock EventBridge Webhook Built-in retries & DLQ
Lambda timed out after 15 mins
Lambda timed out after 15 mins Reprocess fi les on
retry…
Lambda timed out after 15 mins Reprocess fi les on
retry… Duplicated side- effects (e.g. Github comments)
Cost control Only analyse changed lines. Limit free users to
few PRs per month. Use checkpoints to avoid re-processing fi les on retries
const issues = await executeIdempotently( `${event-id}-${filename}-analyze`, () => analyzeFile(file) );
... await executeIdempotently( `${event-id}-${filename}-add-gh-comment`, () => addReviewComment(filename, comment) );
Webhook Analyse changes Feedback Why not Step Functions?
Webhook Analyse changes Feedback Why not Step Functions? Checkpoints is
just easier 🤷
Lesson: Latency is a challenge
Models take 10s of seconds to analyse each fi le
Wasted CPU cycles in Lambda
Future work: try other models
Future work: make use of these CPU cycles
Lesson: Be ware of hallucinations
“Give me JSON in this format”
None
“Give me JSON in this format” “Nope!”
None
Non-existent codes, invalid URLs
Non-existent line numbers
Future works
Go to evolua.io to try it out. We’d love your
feedback!
Questions?