Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ベイズで単回帰モデルを考える /bayes-simple-linear-regression
Search
Thimblee
November 09, 2022
Technology
0
300
ベイズで単回帰モデルを考える /bayes-simple-linear-regression
Thimblee
November 09, 2022
Tweet
Share
More Decks by Thimblee
See All by Thimblee
巡回セールスマン問題での貪欲法の精度 / accuracy of greedy method in TSP
thimblee
0
960
Other Decks in Technology
See All in Technology
ブロックテーマ時代における、テーマの CSS について考える Toro_Unit / 2025.09.13 @ Shinshu WordPress Meetup
torounit
0
130
20250913_JAWS_sysad_kobe
takuyay0ne
2
250
2025/09/16 仕様駆動開発とAI-DLCが導くAI駆動開発の新フェーズ
masahiro_okamura
0
140
共有と分離 - Compose Multiplatform "本番導入" の設計指針
error96num
2
1.2k
Terraformで構築する セルフサービス型データプラットフォーム / terraform-self-service-data-platform
pei0804
1
200
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
2
470
Snowflake×dbtを用いたテレシーのデータ基盤のこれまでとこれから
sagara
0
120
5分でカオスエンジニアリングを分かった気になろう
pandayumi
0
260
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
10k
AI時代を生き抜くエンジニアキャリアの築き方 (AI-Native 時代、エンジニアという道は 「最大の挑戦の場」となる) / Building an Engineering Career to Thrive in the Age of AI (In the AI-Native Era, the Path of Engineering Becomes the Ultimate Arena of Challenge)
jeongjaesoon
0
260
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
350
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
130
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.6k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Statistics for Hackers
jakevdp
799
220k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Facilitating Awesome Meetings
lara
55
6.5k
Thoughts on Productivity
jonyablonski
70
4.8k
How to Ace a Technical Interview
jacobian
279
23k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Transcript
ϕΠζͰ୯ճؼϞσϧΛߟ͑Δ 5IJNCMFF 1
ઃఆ ܇࿅σʔλͷઆ໌ม ͱతม ͔ΒҎԼͷ ༧ଌΛٻΊΔ ҎԼͷ୯ճؼϞσϧΛ༻͢Δ x = (x1
, x2 , ⋯, xN )T t = (t1 , t2 , ⋯, tN )T p(t* |x* , t, x) p(t* |x* , w, β) = 𝒩 (t* |w0 + w1 x* , β−1) 2
۩ମతʹ ͜͏͍͏σʔλʹର͍͍ͯ͠ײ͡ʹύϥϝʔλ Λௐͯ͠ɺઢ ΛҾ͖͍ͨɻ͜ͷσʔλେମ ͱͳ͍ͬͯΔɻ w = (w0 , w1
)T y = w0 + w1 x t = − 2 + 2x 3
ϕΠζͷఆཧ p(A|B) = p(A)p(B|A) p(B) 4
ࣄޙ QPTUFSJPS ύϥϝʔλɺ σʔλ ࣄޙΛ༻͍ͨύϥϝʔλͷਪఆ͕ϕΠζਪఆͰ͢ɻ w t p(w|t)
= p(w)p(t|w) p(t) ∝ p(w)p(t|w) (posterior) ∝ (prior)(likelihood) 5
ࣄલ QSJPS p(w) = 𝒩 (w|0, α−1I), α =
0.25 6
ؔ MJLFMJIPPE L(w) = p(t|w) = 𝒩 (t|m, β−1I)
where m = (w0 + w1 x1 , w0 + w1 x2 , ⋯, w0 + w1 xN )T, β = 2.0 7
ؔͷྫ ͜ͷΑ͏ͳ͍͍ײ͡ͷઢͩͱͱ͍͏େ͖͍ΛͱΔ L((−2.1,2.2)T) = 0.39 8
ؔͷྫ ͜ͷΑ͏ͳઢͩͱͱ͍͏ΛͱΔ L((−1.0,0.0)T) = 0.29 9
ؔͷྫ ͜ͷΑ͏ͳѱ͍ઢͩͱͱ͍͏খ͍͞ΛͱΔ L((1.0, − 3.0)T) = 0.18 10
ࣄલͱؔʢ࠶ܝʣ ؔ MJLFMJIPPE ࣄલ QSJPS 11
ࣄલͱؔͷੵ 12
ٻΊΒΕͨઢ ࣄޙ ͷ࣌ʹ࠷େʹͳΔ w = (−1.08,0.38) L((−1.08,0.38)T) = 0.31
13
͚ؔͩʢ࠷ਪఆʣͰ͍͍ͷͰ ϕΠζʢࣄޙʣͩͱσʔλΛ͏·͘දݱͰ͖͍ͯͳ͍ ࣮ࡍɺ͜ͷσʔλΛ୯ճؼϞσϧͰֶश͢ΔࡍʹϕΠζඞཁͳ͍ ʢ୯ճؼϞσϧ͕ཧղ͍͔͢͠Β༻͍ͨʣ ͔͠͠ɺҰൠʹϕΠζͰߟ͑ΔϝϦοτ͕ଟ͍ 14
ϕΠζͷಛ w ύϥϝʔλʢ୯ճؼϞσϧͳΒ ʣʹ͍ͭͯ֬Λߟ͑ΒΕΔ w ࣄલʹʢσʔλҎ֎ͷʣطͷใΛөͤ͞ΒΕΔ w ֬ͷஞ࣍ߋ৽͕Ͱ͖Δ w աֶशΛ͛Δʢਖ਼ଇԽʣ
w ʢଞʹ৭ʑ͋Δͱࢥ͍·͢ʣ w 15
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ 16