Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ベイズで単回帰モデルを考える /bayes-simple-linear-regression
Search
Thimblee
November 09, 2022
Technology
0
300
ベイズで単回帰モデルを考える /bayes-simple-linear-regression
Thimblee
November 09, 2022
Tweet
Share
More Decks by Thimblee
See All by Thimblee
巡回セールスマン問題での貪欲法の精度 / accuracy of greedy method in TSP
thimblee
0
950
Other Decks in Technology
See All in Technology
サイボウズフロントエンドの横断活動から考える AI時代にできること
mugi_uno
4
1.4k
イオン店舗一覧ページのパフォーマンスチューニング事例 / Performance tuning example for AEON store list page
aeonpeople
1
220
なごミュ@SPAJAM2025 第二回予選
1901drama
0
120
マイクロモビリティシェアサービスを支える プラットフォームアーキテクチャ
grimoh
1
180
知られざるprops命名の慣習 アクション編
uhyo
10
2.1k
Delegate authentication and a lot more to Keycloak with OpenID Connect
ahus1
0
240
RAID6 を楔形文字で組んで現代人を怖がらせましょう(実装編)
mimifuwa
0
290
Gaze-LLE: Gaze Target Estimation via Large-Scale Learned Encoders
kzykmyzw
0
300
開発と脆弱性と脆弱性診断についての話
su3158
1
1.1k
夢の印税生活 / Life on Royalties
tmtms
0
280
あなたの知らない OneDrive
murachiakira
0
230
GCASアップデート(202506-202508)
techniczna
0
240
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
173
14k
Why Our Code Smells
bkeepers
PRO
338
57k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
480
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Gamification - CAS2011
davidbonilla
81
5.4k
Rails Girls Zürich Keynote
gr2m
95
14k
The Art of Programming - Codeland 2020
erikaheidi
55
13k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Transcript
ϕΠζͰ୯ճؼϞσϧΛߟ͑Δ 5IJNCMFF 1
ઃఆ ܇࿅σʔλͷઆ໌ม ͱతม ͔ΒҎԼͷ ༧ଌΛٻΊΔ ҎԼͷ୯ճؼϞσϧΛ༻͢Δ x = (x1
, x2 , ⋯, xN )T t = (t1 , t2 , ⋯, tN )T p(t* |x* , t, x) p(t* |x* , w, β) = 𝒩 (t* |w0 + w1 x* , β−1) 2
۩ମతʹ ͜͏͍͏σʔλʹର͍͍ͯ͠ײ͡ʹύϥϝʔλ Λௐͯ͠ɺઢ ΛҾ͖͍ͨɻ͜ͷσʔλେମ ͱͳ͍ͬͯΔɻ w = (w0 , w1
)T y = w0 + w1 x t = − 2 + 2x 3
ϕΠζͷఆཧ p(A|B) = p(A)p(B|A) p(B) 4
ࣄޙ QPTUFSJPS ύϥϝʔλɺ σʔλ ࣄޙΛ༻͍ͨύϥϝʔλͷਪఆ͕ϕΠζਪఆͰ͢ɻ w t p(w|t)
= p(w)p(t|w) p(t) ∝ p(w)p(t|w) (posterior) ∝ (prior)(likelihood) 5
ࣄલ QSJPS p(w) = 𝒩 (w|0, α−1I), α =
0.25 6
ؔ MJLFMJIPPE L(w) = p(t|w) = 𝒩 (t|m, β−1I)
where m = (w0 + w1 x1 , w0 + w1 x2 , ⋯, w0 + w1 xN )T, β = 2.0 7
ؔͷྫ ͜ͷΑ͏ͳ͍͍ײ͡ͷઢͩͱͱ͍͏େ͖͍ΛͱΔ L((−2.1,2.2)T) = 0.39 8
ؔͷྫ ͜ͷΑ͏ͳઢͩͱͱ͍͏ΛͱΔ L((−1.0,0.0)T) = 0.29 9
ؔͷྫ ͜ͷΑ͏ͳѱ͍ઢͩͱͱ͍͏খ͍͞ΛͱΔ L((1.0, − 3.0)T) = 0.18 10
ࣄલͱؔʢ࠶ܝʣ ؔ MJLFMJIPPE ࣄલ QSJPS 11
ࣄલͱؔͷੵ 12
ٻΊΒΕͨઢ ࣄޙ ͷ࣌ʹ࠷େʹͳΔ w = (−1.08,0.38) L((−1.08,0.38)T) = 0.31
13
͚ؔͩʢ࠷ਪఆʣͰ͍͍ͷͰ ϕΠζʢࣄޙʣͩͱσʔλΛ͏·͘දݱͰ͖͍ͯͳ͍ ࣮ࡍɺ͜ͷσʔλΛ୯ճؼϞσϧͰֶश͢ΔࡍʹϕΠζඞཁͳ͍ ʢ୯ճؼϞσϧ͕ཧղ͍͔͢͠Β༻͍ͨʣ ͔͠͠ɺҰൠʹϕΠζͰߟ͑ΔϝϦοτ͕ଟ͍ 14
ϕΠζͷಛ w ύϥϝʔλʢ୯ճؼϞσϧͳΒ ʣʹ͍ͭͯ֬Λߟ͑ΒΕΔ w ࣄલʹʢσʔλҎ֎ͷʣطͷใΛөͤ͞ΒΕΔ w ֬ͷஞ࣍ߋ৽͕Ͱ͖Δ w աֶशΛ͛Δʢਖ਼ଇԽʣ
w ʢଞʹ৭ʑ͋Δͱࢥ͍·͢ʣ w 15
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ 16