Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ベイズで単回帰モデルを考える /bayes-simple-linear-regression
Search
Thimblee
November 09, 2022
Technology
0
330
ベイズで単回帰モデルを考える /bayes-simple-linear-regression
Thimblee
November 09, 2022
Tweet
Share
More Decks by Thimblee
See All by Thimblee
巡回セールスマン問題での貪欲法の精度 / accuracy of greedy method in TSP
thimblee
0
1k
Other Decks in Technology
See All in Technology
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
800
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
2
540
Directions Asia 2025 _ Let’s build my own secretary (AI Agent) Part 1 & 2
ryoheig0405
0
110
Claude Skillsの テスト業務での活用事例
moritamasami
1
120
ルネサンス開発者を育てる 1on1支援AIエージェント
yusukeshimizu
0
130
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
280
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
250
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
520
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
140
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
270
Knowledge Work の AI Backend
kworkdev
PRO
0
340
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.7k
A Soul's Torment
seathinner
1
2.1k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
170
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Embracing the Ebb and Flow
colly
88
4.9k
The untapped power of vector embeddings
frankvandijk
1
1.5k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Are puppies a ranking factor?
jonoalderson
0
2.5k
Writing Fast Ruby
sferik
630
62k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
180
Transcript
ϕΠζͰ୯ճؼϞσϧΛߟ͑Δ 5IJNCMFF 1
ઃఆ ܇࿅σʔλͷઆ໌ม ͱతม ͔ΒҎԼͷ ༧ଌΛٻΊΔ ҎԼͷ୯ճؼϞσϧΛ༻͢Δ x = (x1
, x2 , ⋯, xN )T t = (t1 , t2 , ⋯, tN )T p(t* |x* , t, x) p(t* |x* , w, β) = 𝒩 (t* |w0 + w1 x* , β−1) 2
۩ମతʹ ͜͏͍͏σʔλʹର͍͍ͯ͠ײ͡ʹύϥϝʔλ Λௐͯ͠ɺઢ ΛҾ͖͍ͨɻ͜ͷσʔλେମ ͱͳ͍ͬͯΔɻ w = (w0 , w1
)T y = w0 + w1 x t = − 2 + 2x 3
ϕΠζͷఆཧ p(A|B) = p(A)p(B|A) p(B) 4
ࣄޙ QPTUFSJPS ύϥϝʔλɺ σʔλ ࣄޙΛ༻͍ͨύϥϝʔλͷਪఆ͕ϕΠζਪఆͰ͢ɻ w t p(w|t)
= p(w)p(t|w) p(t) ∝ p(w)p(t|w) (posterior) ∝ (prior)(likelihood) 5
ࣄલ QSJPS p(w) = 𝒩 (w|0, α−1I), α =
0.25 6
ؔ MJLFMJIPPE L(w) = p(t|w) = 𝒩 (t|m, β−1I)
where m = (w0 + w1 x1 , w0 + w1 x2 , ⋯, w0 + w1 xN )T, β = 2.0 7
ؔͷྫ ͜ͷΑ͏ͳ͍͍ײ͡ͷઢͩͱͱ͍͏େ͖͍ΛͱΔ L((−2.1,2.2)T) = 0.39 8
ؔͷྫ ͜ͷΑ͏ͳઢͩͱͱ͍͏ΛͱΔ L((−1.0,0.0)T) = 0.29 9
ؔͷྫ ͜ͷΑ͏ͳѱ͍ઢͩͱͱ͍͏খ͍͞ΛͱΔ L((1.0, − 3.0)T) = 0.18 10
ࣄલͱؔʢ࠶ܝʣ ؔ MJLFMJIPPE ࣄલ QSJPS 11
ࣄલͱؔͷੵ 12
ٻΊΒΕͨઢ ࣄޙ ͷ࣌ʹ࠷େʹͳΔ w = (−1.08,0.38) L((−1.08,0.38)T) = 0.31
13
͚ؔͩʢ࠷ਪఆʣͰ͍͍ͷͰ ϕΠζʢࣄޙʣͩͱσʔλΛ͏·͘දݱͰ͖͍ͯͳ͍ ࣮ࡍɺ͜ͷσʔλΛ୯ճؼϞσϧͰֶश͢ΔࡍʹϕΠζඞཁͳ͍ ʢ୯ճؼϞσϧ͕ཧղ͍͔͢͠Β༻͍ͨʣ ͔͠͠ɺҰൠʹϕΠζͰߟ͑ΔϝϦοτ͕ଟ͍ 14
ϕΠζͷಛ w ύϥϝʔλʢ୯ճؼϞσϧͳΒ ʣʹ͍ͭͯ֬Λߟ͑ΒΕΔ w ࣄલʹʢσʔλҎ֎ͷʣطͷใΛөͤ͞ΒΕΔ w ֬ͷஞ࣍ߋ৽͕Ͱ͖Δ w աֶशΛ͛Δʢਖ਼ଇԽʣ
w ʢଞʹ৭ʑ͋Δͱࢥ͍·͢ʣ w 15
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ 16