Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ベイズで単回帰モデルを考える /bayes-simple-linear-regression
Search
Thimblee
November 09, 2022
Technology
0
300
ベイズで単回帰モデルを考える /bayes-simple-linear-regression
Thimblee
November 09, 2022
Tweet
Share
More Decks by Thimblee
See All by Thimblee
巡回セールスマン問題での貪欲法の精度 / accuracy of greedy method in TSP
thimblee
0
960
Other Decks in Technology
See All in Technology
La gouvernance territoriale des données grâce à la plateforme Terreze
bluehats
0
190
250905 大吉祥寺.pm 2025 前夜祭 「プログラミングに出会って20年、『今』が1番楽しい」
msykd
PRO
1
980
自作JSエンジンに推しプロポーザルを実装したい!
sajikix
1
190
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
160
Modern Linux
oracle4engineer
PRO
0
150
【NoMapsTECH 2025】AI Edge Computing Workshop
akit37
0
220
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
260
TS-S205_昨年対比2倍以上の機能追加を実現するデータ基盤プロジェクトでのAI活用について
kaz3284
1
210
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
270
LLM時代のパフォーマンスチューニング:MongoDB運用で試したコンテキスト活用の工夫
ishikawa_pro
0
160
Rustから学ぶ 非同期処理の仕組み
skanehira
1
150
普通のチームがスクラムを会得するたった一つの冴えたやり方 / the best way to scrum
okamototakuyasr2
0
100
Featured
See All Featured
Music & Morning Musume
bryan
46
6.8k
Designing for Performance
lara
610
69k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
113
20k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
What's in a price? How to price your products and services
michaelherold
246
12k
Done Done
chrislema
185
16k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Building Applications with DynamoDB
mza
96
6.6k
Thoughts on Productivity
jonyablonski
70
4.8k
Transcript
ϕΠζͰ୯ճؼϞσϧΛߟ͑Δ 5IJNCMFF 1
ઃఆ ܇࿅σʔλͷઆ໌ม ͱతม ͔ΒҎԼͷ ༧ଌΛٻΊΔ ҎԼͷ୯ճؼϞσϧΛ༻͢Δ x = (x1
, x2 , ⋯, xN )T t = (t1 , t2 , ⋯, tN )T p(t* |x* , t, x) p(t* |x* , w, β) = 𝒩 (t* |w0 + w1 x* , β−1) 2
۩ମతʹ ͜͏͍͏σʔλʹର͍͍ͯ͠ײ͡ʹύϥϝʔλ Λௐͯ͠ɺઢ ΛҾ͖͍ͨɻ͜ͷσʔλେମ ͱͳ͍ͬͯΔɻ w = (w0 , w1
)T y = w0 + w1 x t = − 2 + 2x 3
ϕΠζͷఆཧ p(A|B) = p(A)p(B|A) p(B) 4
ࣄޙ QPTUFSJPS ύϥϝʔλɺ σʔλ ࣄޙΛ༻͍ͨύϥϝʔλͷਪఆ͕ϕΠζਪఆͰ͢ɻ w t p(w|t)
= p(w)p(t|w) p(t) ∝ p(w)p(t|w) (posterior) ∝ (prior)(likelihood) 5
ࣄલ QSJPS p(w) = 𝒩 (w|0, α−1I), α =
0.25 6
ؔ MJLFMJIPPE L(w) = p(t|w) = 𝒩 (t|m, β−1I)
where m = (w0 + w1 x1 , w0 + w1 x2 , ⋯, w0 + w1 xN )T, β = 2.0 7
ؔͷྫ ͜ͷΑ͏ͳ͍͍ײ͡ͷઢͩͱͱ͍͏େ͖͍ΛͱΔ L((−2.1,2.2)T) = 0.39 8
ؔͷྫ ͜ͷΑ͏ͳઢͩͱͱ͍͏ΛͱΔ L((−1.0,0.0)T) = 0.29 9
ؔͷྫ ͜ͷΑ͏ͳѱ͍ઢͩͱͱ͍͏খ͍͞ΛͱΔ L((1.0, − 3.0)T) = 0.18 10
ࣄલͱؔʢ࠶ܝʣ ؔ MJLFMJIPPE ࣄલ QSJPS 11
ࣄલͱؔͷੵ 12
ٻΊΒΕͨઢ ࣄޙ ͷ࣌ʹ࠷େʹͳΔ w = (−1.08,0.38) L((−1.08,0.38)T) = 0.31
13
͚ؔͩʢ࠷ਪఆʣͰ͍͍ͷͰ ϕΠζʢࣄޙʣͩͱσʔλΛ͏·͘දݱͰ͖͍ͯͳ͍ ࣮ࡍɺ͜ͷσʔλΛ୯ճؼϞσϧͰֶश͢ΔࡍʹϕΠζඞཁͳ͍ ʢ୯ճؼϞσϧ͕ཧղ͍͔͢͠Β༻͍ͨʣ ͔͠͠ɺҰൠʹϕΠζͰߟ͑ΔϝϦοτ͕ଟ͍ 14
ϕΠζͷಛ w ύϥϝʔλʢ୯ճؼϞσϧͳΒ ʣʹ͍ͭͯ֬Λߟ͑ΒΕΔ w ࣄલʹʢσʔλҎ֎ͷʣطͷใΛөͤ͞ΒΕΔ w ֬ͷஞ࣍ߋ৽͕Ͱ͖Δ w աֶशΛ͛Δʢਖ਼ଇԽʣ
w ʢଞʹ৭ʑ͋Δͱࢥ͍·͢ʣ w 15
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ 16