Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ベイズで単回帰モデルを考える /bayes-simple-linear-regression
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Thimblee
November 09, 2022
Technology
0
340
ベイズで単回帰モデルを考える /bayes-simple-linear-regression
Thimblee
November 09, 2022
Tweet
Share
More Decks by Thimblee
See All by Thimblee
巡回セールスマン問題での貪欲法の精度 / accuracy of greedy method in TSP
thimblee
0
1k
Other Decks in Technology
See All in Technology
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
190
月間数億レコードのアクセスログ基盤を無停止・低コストでAWS移行せよ!アプリケーションエンジニアのSREチャレンジ💪
miyamu
0
810
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
180
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
600
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.8k
AWS Network Firewall Proxyを触ってみた
nagisa53
0
140
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
200
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
140
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
180
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.6k
Featured
See All Featured
New Earth Scene 8
popppiees
1
1.5k
Site-Speed That Sticks
csswizardry
13
1.1k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
170
A Tale of Four Properties
chriscoyier
162
24k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
10
1.1k
From π to Pie charts
rasagy
0
120
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
680
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
Visualization
eitanlees
150
17k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
The Spectacular Lies of Maps
axbom
PRO
1
520
Transcript
ϕΠζͰ୯ճؼϞσϧΛߟ͑Δ 5IJNCMFF 1
ઃఆ ܇࿅σʔλͷઆ໌ม ͱతม ͔ΒҎԼͷ ༧ଌΛٻΊΔ ҎԼͷ୯ճؼϞσϧΛ༻͢Δ x = (x1
, x2 , ⋯, xN )T t = (t1 , t2 , ⋯, tN )T p(t* |x* , t, x) p(t* |x* , w, β) = 𝒩 (t* |w0 + w1 x* , β−1) 2
۩ମతʹ ͜͏͍͏σʔλʹର͍͍ͯ͠ײ͡ʹύϥϝʔλ Λௐͯ͠ɺઢ ΛҾ͖͍ͨɻ͜ͷσʔλେମ ͱͳ͍ͬͯΔɻ w = (w0 , w1
)T y = w0 + w1 x t = − 2 + 2x 3
ϕΠζͷఆཧ p(A|B) = p(A)p(B|A) p(B) 4
ࣄޙ QPTUFSJPS ύϥϝʔλɺ σʔλ ࣄޙΛ༻͍ͨύϥϝʔλͷਪఆ͕ϕΠζਪఆͰ͢ɻ w t p(w|t)
= p(w)p(t|w) p(t) ∝ p(w)p(t|w) (posterior) ∝ (prior)(likelihood) 5
ࣄલ QSJPS p(w) = 𝒩 (w|0, α−1I), α =
0.25 6
ؔ MJLFMJIPPE L(w) = p(t|w) = 𝒩 (t|m, β−1I)
where m = (w0 + w1 x1 , w0 + w1 x2 , ⋯, w0 + w1 xN )T, β = 2.0 7
ؔͷྫ ͜ͷΑ͏ͳ͍͍ײ͡ͷઢͩͱͱ͍͏େ͖͍ΛͱΔ L((−2.1,2.2)T) = 0.39 8
ؔͷྫ ͜ͷΑ͏ͳઢͩͱͱ͍͏ΛͱΔ L((−1.0,0.0)T) = 0.29 9
ؔͷྫ ͜ͷΑ͏ͳѱ͍ઢͩͱͱ͍͏খ͍͞ΛͱΔ L((1.0, − 3.0)T) = 0.18 10
ࣄલͱؔʢ࠶ܝʣ ؔ MJLFMJIPPE ࣄલ QSJPS 11
ࣄલͱؔͷੵ 12
ٻΊΒΕͨઢ ࣄޙ ͷ࣌ʹ࠷େʹͳΔ w = (−1.08,0.38) L((−1.08,0.38)T) = 0.31
13
͚ؔͩʢ࠷ਪఆʣͰ͍͍ͷͰ ϕΠζʢࣄޙʣͩͱσʔλΛ͏·͘දݱͰ͖͍ͯͳ͍ ࣮ࡍɺ͜ͷσʔλΛ୯ճؼϞσϧͰֶश͢ΔࡍʹϕΠζඞཁͳ͍ ʢ୯ճؼϞσϧ͕ཧղ͍͔͢͠Β༻͍ͨʣ ͔͠͠ɺҰൠʹϕΠζͰߟ͑ΔϝϦοτ͕ଟ͍ 14
ϕΠζͷಛ w ύϥϝʔλʢ୯ճؼϞσϧͳΒ ʣʹ͍ͭͯ֬Λߟ͑ΒΕΔ w ࣄલʹʢσʔλҎ֎ͷʣطͷใΛөͤ͞ΒΕΔ w ֬ͷஞ࣍ߋ৽͕Ͱ͖Δ w աֶशΛ͛Δʢਖ਼ଇԽʣ
w ʢଞʹ৭ʑ͋Δͱࢥ͍·͢ʣ w 15
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ 16