UX/UIを高度に改善!AIを有効活用するポイント

F218525cf18b4e32867c041b73334ec6?s=47 tomohisa
August 24, 2018

 UX/UIを高度に改善!AIを有効活用するポイント

F218525cf18b4e32867c041b73334ec6?s=128

tomohisa

August 24, 2018
Tweet

Transcript

  1. The Guild ษڧձ | Adobe Customer Solutions | Senior Consultant

    | Tomohisa Yamada UX/UIΛߴ౓ʹվળʂAIΛ༗ޮ׆༻͢ΔͨΊͷϙΠϯτ
  2. 荈䊹稱➜㿊歊兰⛉ 2018 2016 2007 ⽆㜠㛔،؎٥أةآؔ ؐؑـفٗرُ٦؟٦ ،سؽ ؙؒألٔؒٝأؽآطأ鿇 ءص،؝ٝ؟ٕةٝز ܦݧͱצͰ੍࡞͍ͯͨ࣌͠୅͔Βɺσʔλத৺ʹاըΛߟ͑ΔΩϟϦΞ΁

  3. כׄ׭חז׈ֿֿד鑧׾׃גְ׷ךַ ،سؽך؝ٝ؟ٕةٝزכծ 葿ղז696*鏣鎘װ何㊣חꟼ׻׷噟⹡ָ㢳ְ וך״ֲזוֲװ׏גر٦ة׾崞欽׃גְ׷ך

  4. ׫זׁ׿ך،سؽך؎ً٦آ Adobe Document Cloud Adobe Creative Cloud ˟䒷欽DPSQPUBUF@QSFTFOUFUJPO@NPEVMFT

  5. ADOBE SENSEI
 AI/ML Framework and Intelligent Services CONTENT DATA ADOBE.IO

    剑倜ך،سؽךفٓحزؿؓ٦ي纇 ˟䒷欽DPSQPUBUF@QSFTFOUFUJPO@NPEVMFT
  6. 猘ָ؝ٝ؟ٕةٝزדꟼ׻׷걄㚖 ADOBE MARKETING CLOUD ADOBE ANALYTICS CLOUD ADOBE ADVERTISING CLOUD

    ˟䒷欽DPSQPUBUF@QSFTFOUFUJPO@NPEVMFT
  7. رآةٕو٦؛ذ؍ؚٝךⴓ匿ַ׵倵瘻㹋遤תד Adobe Marketing Cloud Adobe Analytics Cloud Adobe Advertising Cloud

    Experience Manager Campaign Primetime Target Audience Manager Analytics Search DSP Creative TV ˟䒷欽DPSQPUBUF@QSFTFOUFUJPO@NPEVMFT ΢ΣϒαΠτɺΞϓϦɺ ϝʔϧɺಈըͳͲͷ
 Φ΢ϯυϝσΟΞ࠷దԽ ༷ʑͳ֎෦αΠτʹ
 ͓͚Δ޿ࠂ഑৴ͱ࠷దԽ ͦΕͧΕͷࢪࡦ෼ੳͱ ηάϝϯςʔγϣϯ࿈ܞ
  8. ו׿ז噟⹡׾װ׏גְ׷ךַ 㼪Ⰵ銲⟝㹀纏ה
 䪮遭؟ه٦ز 醡ㅷꟼ⤘זֻ ✲噟䱿鹌׾佄䴂 ぐ醡ㅷך㼪Ⰵ佄䴂 ぐ醡ㅷך崞欽佄䴂 و٦؛ذ؍ؚٝ佄䴂 ؽآطأ佄䴂 و٦؛ذ؍ؚٝ

    倵瘻הⴓ匿׾佄䴂 醡ㅷزٖ٦صؚٝ װ倵瘻؟ه٦ز
  9. UX/UIΛߴ౓ʹվળʂAIΛ༗ޮ׆༻͢ΔͨΊͷϙΠϯτ

  10. 劤傈鑧ׅذ٦و鼅㹀椚歋 696*何㊣ח㹀ꆀر٦ة׾欽ְ׋ⴓ匿כꅾ銲 "*׾穈׫さ׻ׇ׷הծ 帾㛑ָװ׶װֻׅծ⸬卓涸ז何㊣ָדֹ׷״ֲחז׷

  11. ֿ׸ַ׵鑧ׅ⵸䲿✲갪חאְג 6*69ך؝زغך眔㔲 "*ך؝زغך眔㔲 ⚺ח堣唒㷕统׾欽ְ׋ծ ⴓ匿٥剑黝⻉倵瘻 ؐؑـ؟؎زװأوم،فٔ

  12. 劤傈ך⚺겗 6*69何㊣ח"*כծוֲ⢪ִל״ְַ "*ךذؙٗظآ٦堣腉כչ䩛媮պկ 崞欽؎ً٦آָ䲽ֽזֽ׸לծ⸬卓ָ⳿זְկ 崞欽؎ً٦آ׾䲽ֹװֻׅׅ׷ه؎ٝز׾稱➜

  13. "*ך堣腉׾⢪ֲ⵸ח罋ִ׷ծ ⟃♴ך䙼罋فٗإأ⡲噟ָꅾ銲 א׋ִ׋ְֿה 湡涸׾圓鸡涸חⴓ鍑 何㊣湡垥׾鏣㹀 湡垥麦䧭ך׋׭ך铬겗暴㹀

  14. ه؎ٝز΍ "*דؕغ٦דֹ׷6*69何㊣فٗإأך眔㔲 荈⸂ "* 何㊣⟎铡ך ✲⵸㹀纏 ⴓ匿ה何㊣⟰歗 倵瘻ך㹋倵 ✲䖓鐰⣣ 何㊣湡涸ה湡垥ך㹀纏

  15. ه؎ٝزΎ 湡涸ה湡垥ך꟦׾鎉铂⻉׃ծ䭷垥⻉ׅ׷ֿהדծ "*ך⢪ְ䨽ָ׻ַ׶װֻׅז׷ 䭷垥 ر؍ًٝءّٝإًؚٝز ل٦آؽُ٦ 飑Ⰵ侧 ꨄ膴桦 ⱄ欰侧 崧Ⰵ穗騟

    رغ؎أ 䚍ⴽ 葺׃䝤׃׾ⴻ倖׃׋׶ծ
 ✮庠ׅ׷׋׭ח "*׾⢪ֲ 䭷垥ח䕦갟׾♷ִ׷ 銲稆׾鋅אֽ׷׋׭ח
 "*׾⢪ֲ
  16. ه؎ٝزΏ "*׾崞欽ׅ׷걄㚖׾ⴓ匿ה倵瘻חⴓֽג涪䟝ׅ׷ ⴓ匿ך鑧 倵瘻ך鑧 ˖ 遤⹛ػة٦ٝ׾暴㹀׃׋ְ ˖ 遤⹛䊴殯ַ׵إًؚٝز׾暴㹀׃׋ְ ˖ 殯䌢⦼ך呎劤⾱㔓ה✮庠׾濼׶׋ְ

    ˖ 遤⹛ⰻ㺁ח屟׏׋䞔㜠׾⳿׃׋ְ ˖ ׉ך➂ח֮׏׋䞔㜠׾⳿׃׋ְ ˖ 荈⹛涸ח䞔㜠׾ꂁⴓׇׁגֶֹ׋ְ
  17. ⿫罋،سؽך㜥さ ⴓ匿ך鑧 倵瘻ך鑧 Personalized Recommendations Auto Target Auto Allocate Automated

    Personalization Segment Compare Intelligent Alerts Anomaly Detection Contribution Analysis
  18. ✲⢽قٕفؖ؎س؟؎زד罋ִג׫ת׃׳ֲ 何㊣湡涸׾㹀纏ׅ׷ ِ٦ؠ٦ך铬겗㔭׶׀ה׾ 鍑寸ׅ׷ 䗳銲ז'"2ل٦آח ׋ו׶滠ֽ׷ 鑫稢زؾحؙד鍑寸דֹ׷ 䞔㜠׾♷ִ׵׸׷ 鑫稢鋅גְזְ 鏝㉏כזְַ

    ְֻא׮鑫稢زؾحؙ׾ 鋅ג׃ת׏גְזְַ 醡ㅷ؟؎زך㉏ְさ׻ׇ׾ ⵃ欽׃ג׃ת׏גְזְַ ؟؎زⰻ嗚稊׾ ⢪ִגְ׷ַ ➭ךزؾحؙ׾ 鋅גְזְַ 鑫稢ل٦آ׾剑䖓תד ꠘ鋮דֹגְ׷ַ 椚鍑ׅ׷ֿהָ דֹ׋ַ
  19. ✲⢽قٕفؖ؎س؟؎زד罋ִג׫ת׃׳ֲ 何㊣湡垥ה何㊣⟎铡ך㹀纏׾䗡䎿涸ח鎉铂⻉ׅ׷ ِ٦ؠ٦ך铬겗㔭׶׀ה׾ 鍑寸ׅ׷ 䗳銲ז'"2ل٦آח ׋ו׶滠ֽ׷ 鑫稢鋅גְזְ 鏝㉏כזְַ ְֻא׮鑫稢زؾحؙ׾ 鋅ג׃ת׏גְזְַ

    醡ㅷ؟؎زך㉏ְさ׻ׇ׾ ⵃ欽׃ג׃ת׏גְזְַ ؟؎زⰻ嗚稊׾ ⢪ִגְ׷ַ 滠湡ׅץֹ䭷垥 䭷垥ك٦أך،ؙءّٝ ˖ '"2ⵋ麦桦'"2鑫稢׾א׮
 鋅גְזְ鏝㉏؟؎زⰋ⡤鏝㉏ ˖ ؝ٝذٝخكٗءذ؍'"217
 ػ٦ذ؍ءل٦ءّٝ؟؎زⰋ⡤ ˖ '"2顀柃䏝ⶴさ'"2鏝㉏罏侧
 ؝ٝةؙزإٝة٦「➰侧 ˖ ئٗ⟝ؼحز桦؟؎زئٗ⟝)*5侧 ؟؎ز嗚稊㔐侧 ˖ 嗚稊穠卓$53嗚稊穠卓ؙٔحؙ侧 ٙ٦سⴽ嗚稊穠卓ل٦آ邌爙㔐侧 ˖ ⵋ麦桦ָ♳ָ׷״ֲח
 ل٦آ⹛简鏣鎘׾鋅湫ׅ ˖ كٗءذ؍أ؝،׾♴־ծ⡭ⴓז遤⹛ ׾㼰זֻׅ׷׋׭ך؟؎زⱄ鏣鎘 ˖ 顀柃䏝׾♳־׷׋׭חծ
 ⹛简װ'"2׉ך׮ך׾鋅湫ׅ ˖ ئٗ⟝ؼحز桦׾♴־׷׋׭חص٦ؤ ׾審׫《׷،ٝ؟٦׾欽䠐ׅ׷ ˖ $53׾♳־׷׋׭ח嗚稊穠卓俑畍׾鋅 湫ׅ
  20. 湡涸ה湡垥ך鎉铂⻉ָדֹ׸לծ "*堣腉דⴓ匿ׅץֹⰻ㺁ה倵瘻ָ⳿׃װְׅ 滠湡ׅץֹ䭷垥 ˖ '"2ⵋ麦桦'"2鑫稢׾א׮
 鋅גְזְ鏝㉏؟؎زⰋ⡤鏝㉏ ˖ ؝ٝذٝخكٗءذ؍'"217
 ػ٦ذ؍ءل٦ءّٝ؟؎زⰋ⡤ ˖

    '"2顀柃䏝ⶴさ'"2鏝㉏罏侧
 ؝ٝةؙزإٝة٦「➰侧 ˖ ئٗ⟝ؼحز桦؟؎زئٗ⟝)*5侧 ؟؎ز嗚稊㔐侧 ˖ 嗚稊穠卓$53嗚稊穠卓ؙٔحؙ侧 ٙ٦سⴽ嗚稊穠卓ل٦آ邌爙㔐侧 䭷垥ك٦أך،ؙءّٝ ˖ ⵋ麦桦ָ♳ָ׷״ֲח
 ل٦آ⹛简鏣鎘׾鋅湫ׅ ˖ كٗءذ؍أ؝،׾♴־ծ⡭ⴓז遤⹛ ׾㼰זֻׅ׷׋׭ך؟؎زⱄ鏣鎘 ˖ 顀柃䏝׾♳־׷׋׭חծ
 ⹛简װ'"2׉ך׮ך׾鋅湫ׅ ˖ ئٗ⟝ؼحز桦׾♴־׷׋׭חص٦ؤ ׾審׫《׷،ٝ؟٦׾欽䠐ׅ׷ ˖ $53׾♳־׷׋׭ח嗚稊穠卓俑畍׾鋅 湫ׅ ˖ 殯䌢⦼嗚濼ח״׷
 ئٗ⟝ؼحز桦ח㺔♷ׅ׷
 ر؍ًٝءّٝ锃叨 ˖ '"2ⵋ麦桦ח㼎׃ג
 顀柃䏝ⴓ匿堣腉׾黝欽׃ծ
 ⸬卓ך֮׷إًؚٝز锃叨 ˖ 嗚稊穠卓$53ח㼎׃ג
 ِ٦ؠإًؚٝز嫰鯰׾׃ծ
 إًؚٝز暴䗙׾锃叨 ˖ ئٗ⟝ؼحز儗ח剑黝ז
 ➿剏'"2ך邌爙 ˖ إًؚٝزⴽח
 ل٦آنُٔ٦ي׾
 ⳿׃ⴓֽ
  21. 鑧ךתה׭ ˖ "*דؕغ٦דֹ׷6*69何㊣فٗإأך眔㔲 ˖ 湡涸ה湡垥ך꟦׾鎉铂⻉׃ծ䭷垥⻉ׅ׷ֿהדծ
 "*ך⢪ְ䨽׾׻ַ׶װֻׅׅ׷ ˖ "*׾崞欽ׅ׷걄㚖׾ⴓ匿ה倵瘻חⴓֽג涪䟝ׅ׷

  22. ׀꫼耮
 ֮׶ָהֲ׀ְׂת׃׋ ˋ
 696*رؠ؎ٝ – "EPCF4FOTFJד ؙؒألٔؒٝأؙٔؒ؎ذ؍ـח
 ثٍٖٝآ׃׋ְ➂׮⹫꧊⚥דׅկ

  23. h"EPCF4ZTUFNT*ODPSQPSBUFE"MM3JHIUT3FTFSWFE"EPCF$POGJEFOUJBM