Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生成AI(Generative AI)
Search
momoka
July 08, 2024
Technology
0
900
生成AI(Generative AI)
GUGAの生成AIパスポートの合格者がLT会で発表した資料です。
momoka
July 08, 2024
Tweet
Share
Other Decks in Technology
See All in Technology
米国国防総省のDevSecOpsライフサイクルをAWSのセキュリティサービスとOSSで実現
syoshie
2
490
Rubyで作る論理回路シミュレータの設計の話 - Kashiwa.rb #12
kozy4324
1
330
本部長の代わりに提案書レビュー! KDDI営業が毎日使うAIエージェント「A-BOSS」開発秘話
minorun365
PRO
14
2k
BigQuery Remote FunctionでLooker Studioをインタラクティブ化
cuebic9bic
2
160
IIWレポートからみるID業界で話題のMCP
fujie
0
600
Workflows から Agents へ ~ 生成 AI アプリの成長過程とアプローチ~
belongadmin
3
170
ローカルLLMでファインチューニング
knishioka
0
110
成立するElixirの再束縛(再代入)可という選択
kubell_hr
0
500
データプラットフォーム技術におけるメダリオンアーキテクチャという考え方/DataPlatformWithMedallionArchitecture
smdmts
3
340
マルチテナント+マルチプロダクト SaaS への AI Agent の組み込み方
kworkdev
PRO
2
400
(非公式) AWS Summit Japan と 海浜幕張 の歩き方 2025年版
coosuke
PRO
1
310
DB 醬,嗨!哪泥嘎斯基?
line_developers_tw
PRO
0
920
Featured
See All Featured
KATA
mclloyd
29
14k
Code Review Best Practice
trishagee
68
18k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Done Done
chrislema
184
16k
Facilitating Awesome Meetings
lara
54
6.4k
Docker and Python
trallard
44
3.4k
A Tale of Four Properties
chriscoyier
159
23k
How to Ace a Technical Interview
jacobian
276
23k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Scaling GitHub
holman
459
140k
Building an army of robots
kneath
306
45k
Transcript
生成AI 非公開
GAN RNN Transformer 目次 AIのレベル AIを実現ための技術(概要) ディープラーニングとニ ューラルネットワーク CNN VAE
AIの区分 1. 2. 3. 3.1 3.2 3.3 3.4 3.6 3.5 0. 自己紹介
GAN RNN Transformer 目次 AIのレベル AIを実現ための技術(概要) ディープラーニングとニ ューラルネットワーク CNN VAE
AIの区分 1. 2. 3. 3.1 3.2 3.3 3.4 3.6 3.5 0. 自己紹介
自己紹介 プログラミングはほぼ独学 学生時代はプログラマー 今はソフトフェアエンジニア(社会人2年生) C# , Java , Phython ,
ShellScript , TypeScript(勉強中) などが使えます 昨日、生成AIパスポートを受験しました(多分合格) LT会はじめてです。優しい目で聞いてください 非公開 非公開
GAN RNN Transformer 目次 AIのレベル AIを実現ための技術(概要) ディープラーニングとニ ューラルネットワーク CNN VAE
AIの区分 1. 2. 3. 3.1 3.2 3.3 3.4 3.6 3.5 0. 自己紹介
AIの区分 ANI AGI Artificial Narrow Intelligence 特定のタスクに特化したAI 目覚ましく進化している Artificial General
Intelligence どんな知的タスクにも対応するAI ほとんど進化していない こっちも進化し てるという誤解 が生じている
GAN RNN Transformer 目次 AIのレベル AIを実現ための技術(概要) ディープラーニングとニ ューラルネットワーク CNN VAE
AIの区分 1. 2. 3. 3.1 3.2 3.3 3.4 3.6 3.5 0. 自己紹介
AIのレベル レベル 呼ばれ方 何ができるか 具体例 レベル1 単純な制御プログラム 条件分岐によって出力する。 ⇒ つまりただのプログラム
AI家電 レベル2 ルールベース 入力データから単純な予測や決定を行う Watsonなどの音声認識や チャットボット レベル3 機械学習 自らパターンを見つけ出し、それに基づいて適 切な出力を調整して返す 特徴量は人間が設定する 検索エンジン レベル4 ディープラーニング 特徴量自体も自ら調整して学習する ChatGPT ※特徴量とは機械学習モデルが学習や予測のために手掛かりとなる変数
GAN RNN Transformer 目次 AIのレベル AIを実現ための技術(概要) ディープラーニングとニ ューラルネットワーク CNN VAE
AIの区分 1. 2. 3. 3.1 3.2 3.3 3.4 3.6 3.5 0. 自己紹介
AIを実現している技術(概要) 自己回帰モデル ディープラーニング 過去のデータを使って次のデータを予測する方法 時系列データの予測が得意 人間の脳を模倣した技術 ニューラルネットワークを重ね合わせて作る CNN(畳み込みニューラルネットワーク) VAE(自己変分符号化器) GAN(敵対的生成ネットワーク)
RNN(回帰型ニューラルネットワーク) LSTM(長・短期記憶) Transformerモデル
AIを実現している技術(概要) 自己回帰モデル ディープラーニング 時系列データの予測が得意 過去のデータを使って次のデータを予測する方法 人間の脳を模倣した技術 ニューラルネットワークを重ね合わせて作る CNN(畳み込みニューラルネットワーク) VAE(自己変分符号化器) GAN(敵対的生成ネットワーク)
RNN(回帰型ニューラルネットワーク) LSTM(長・短期記憶) Transformerモデル 詳しく説明します! 非公開
GAN RNN Transformer 目次 AIのレベル AIを実現ための技術(概要) ディープラーニングとニ ューラルネットワーク CNN VAE
AIの区分 1. 2. 3. 3.1 3.2 3.3 3.4 3.6 3.5 0. 自己紹介
ディープラーニングってなに? ニューラルネットワーク 人口ニューロン (ノード) 人間の脳をプログラム で再現!! ニューラルネットワークを多層に重ね合わせたネットワーク 多層学習とも呼ばれる
GAN RNN Transformer 目次 AIのレベル AIを実現ための技術(概要) ディープラーニングとニ ューラルネットワーク CNN VAE
AIの区分 1. 2. 3. 3.1 3.2 3.3 3.4 3.6 3.5 0. 自己紹介
AIを実現している技術-CNN CNN Convolutional Neural Network 畳み込みニューラルネットワーク 画像認識に使われる 局所的に情報処理 ⇒ 局所的な特徴から全体の特徴を抽出
⇒ 認識
GAN RNN Transformer 目次 AIのレベル AIを実現ための技術(概要) ディープラーニングとニ ューラルネットワーク CNN VAE
AIの区分 1. 2. 3. 3.1 3.2 3.3 3.4 3.6 3.5 0. 自己紹介
エンコーダ AIを実現している技術-VAE VAE Variational Autoencoder 自己変分符号化器 画像認識に使われる ノイズが混ざった情報から元のデータを再現する デコーダ 潜在ベクトル
再現データ ノイズ入り データ 変換 変換
GAN RNN Transformer 目次 AIのレベル AIを実現ための技術(概要) ディープラーニングとニ ューラルネットワーク CNN VAE
AIの区分 1. 2. 3. 3.1 3.2 3.3 3.4 3.6 3.5 0. 自己紹介
AIを実現している技術-GAN GAN Generative Adversarial Networks 敵対的生成ネットワーク 生成器と識別器で競い合う 大量の学習データがいらない ⇒生成AIに大きな影響を与える 生成器
識別器 競い合って互いに進化する 本物っぽい画像を作る 頑張って識別!!
GAN RNN Transformer 目次 AIのレベル AIを実現ための技術(概要) ディープラーニングとニ ューラルネットワーク CNN VAE
AIの区分 1. 2. 3. 3.1 3.2 3.3 3.4 3.6 3.5 0. 自己紹介
AIを実現している技術-RNN RNN Recurrent Neural Network 回帰型ニューラルネットワーク 過去の情報を記憶しながら新しい入力を保持する 前の時刻の出力を次の時刻の出力に利用する 時間的思考性を持つデータに有効 LSTM
特殊なRNN さらに複雑なパターンの時系列データの予測ができる 長文すぎると精度が落ちる
GAN RNN Transformer 目次 AIのレベル AIを実現ための技術(概要) ディープラーニングとニ ューラルネットワーク CNN VAE
AIの区分 1. 2. 3. 3.1 3.2 3.3 3.4 3.6 3.5 0. 自己紹介
Transformerモデル AIを実現している技術- Transformerモデル Self-Attention(自己注意力)という機能を持っている データの順番を考慮せず、一度に処理する 単語の位置は位置エンコーディングで保持する この 花 は キレイ
です。 0.06 0.6 0.03 0.3 0.01 入力文章 Attentionスコア
Transformerモデル AIを実現している技術- Transformerモデルの派生 BERTモデル MLM(Masked Langage Model) ⇒ランダムに単語をマスクする 双方向性を持つ ⇒単語の意味を文脈によって決定することができる
NSP(Next Sentence Prediction) ⇒文脈の関連性を理解できる ALBERT(BERTの軽量モデル) RoBERTa(BERTの改良モデル)
Transformerモデル AIを実現している技術- Transformerモデルの派生 GPTモデル(Generative Pre-trained Transformer) 3.5からRLHFが導入された ChatGPTでは会話向けにファインチューニングされている RLHFとは? Reinforcemrnt
Learning from Human 強化学習の一種 人間からのフィードバックを手掛かりに「より人間が 好む回答」を学習
少し生成AIについて詳しくなれましたか?? 私もまだまだ勉強中なので、アドバイスなどあったら お願いします。 ご清聴ありがとうございました。 今日のご縁を大切にしたいです。
非公開 テックブログ Twitter My data https://kawaii-tech-momoka.com/