Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
p値を巡る最近の論争 / ~ Moving to a World Beyond “p < 0....
Search
Tomoshige Nakamura
May 17, 2019
Science
0
1.3k
p値を巡る最近の論争 / ~ Moving to a World Beyond “p < 0.05” ~
近年、The American Statisticianで特集が組まれるほど、問題視されている「p値の誤用問題」について、第3回ヘルスデータアナリティクス・マネジメント研究会で発表したスライドです。
Tomoshige Nakamura
May 17, 2019
Tweet
Share
More Decks by Tomoshige Nakamura
See All by Tomoshige Nakamura
一般化ランダムフォレストの理論と統計的因果推論への応用
tomoshige_n
11
3k
ランダムフォレストによる因果推論と最近の展開
tomoshige_n
12
9.7k
傾向スコアのモデルに含める共変量選択のアプローチ
tomoshige_n
2
2.1k
統計的因果推論とデータ解析 / causal-inference-and-data-analysis
tomoshige_n
31
73k
Other Decks in Science
See All in Science
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
380
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
650
学術講演会中央大学学員会いわき支部
tagtag
0
110
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_ポスター版
hayataka88
0
150
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_LT版
hayataka88
0
1k
(Forkwell Library #48)『詳解 インシデントレスポンス』で学び倒すブルーチーム技術
scientia
2
1.4k
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
100
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
160
Inductive-bias Learning: 大規模言語モデルによる予測モデルの生成
fuyu_quant0
0
120
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
110
拡散モデルの概要 −§2. スコアベースモデルについて−
nearme_tech
PRO
0
700
ほたるのひかり/RayTracingCamp10
kugimasa
0
420
Featured
See All Featured
Code Review Best Practice
trishagee
65
17k
Typedesign – Prime Four
hannesfritz
40
2.4k
Being A Developer After 40
akosma
88
590k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The World Runs on Bad Software
bkeepers
PRO
66
11k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
180
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
300
Navigating Team Friction
lara
183
15k
RailsConf 2023
tenderlove
29
940
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Facilitating Awesome Meetings
lara
50
6.1k
Transcript
1 ౷ܭత༗ҙࠩ Q Λ८Δ࠷ۙͷ૪ɿ .PWJOHUPB8PSME#FZPOElQ z தଜൟ ܚጯٛक़େֶେֶӃ UPNPTIJHFOBLBNVSB!HNBJMDPN 6QEBUFEPO.BZUI
ܚጯٛक़େֶࡾాΩϟϯύε
࣍ ‣ ΠϯτϩμΫγϣϯ ‣ ͜ͷൃදͰѻ͏༰ͱɼൃදͷαϚϦʔ ‣ Qͷ᠘ɻ ‣ QͱԿ͔ʁ ‣
QΛ͏᠘ʮݩͷఆʯͰ͋Δʢ͕͜͜ϙΠϯτʂʣ ‣ Qʹର͢Δ"4"ͷ1SJODJQMF ‣ QͷΛड͚ͯɼԿΛ͖͔͢ʢ.PWJOHUPBXPSMECFZPOElQzʣ ‣ ʮ౷ܭత༗ҙʯ͔Βͷ٫ ‣ "50.ͱ͍͏ݪଇɽ ‣ ݱ࣮తͳΨΠυϥΠϯͱͯ͠ ‣ ࢲ͕ͨͪɺʮQͷੈքʯ͔Β٫͢ΔͨΊʹ !2
࣍ ‣ ΠϯτϩμΫγϣϯ ‣ ͜ͷൃදͰѻ͏༰ͱɼൃදͷαϚϦʔ ‣ Qͷ᠘ɻ ‣ QͱԿ͔ʁ ‣
QΛ͏᠘ʮݩͷఆʯͰ͋Δʢ͕͜͜ϙΠϯτʂʣ ‣ Qʹର͢Δ"4"ͷ1SJODJQMF ‣ QͷΛड͚ͯɼԿΛ͖͔͢ʢ.PWJOHUPBXPSMECFZPOElQzʣ ‣ ʮ౷ܭత༗ҙʯ͔Βͷ٫ ‣ "50.ͱ͍͏ݪଇɽ ‣ ݱ࣮తͳΨΠυϥΠϯͱͯ͠ ‣ ࢲ͕ͨͪɺʮQͷੈքʯ͔Β٫͢ΔͨΊʹ !3
͜ͷϓϨθϯςʔγϣϯͰѻ͏༰ ‣ ͜ͷϓϨθϯςʔγϣϯͰɼҎԼͷจࢽͷͷ ಛूʹ͋Δɹ࣍ͷจΛѻ͍·͢ ‣ จࢽɿ5IF"NFSJDBO4UBUJTUJDJBO ‣ 7PMVNF ‣ ಛूɿ4UBUJTUJDBM*OGFSFODFJOUIFTU$FOUVSZ"
8PSME#FZPOEQ ‣ จɿ8BTTFSTUFJO3 4DIJSN" BOE-B[BS/ .PWJOHUPB8PSME#FZPOElQ z ‣ จͷ༰ΠϯλʔωοτͰΞΫηε͢ΕӾཡՄೳͳ ͷͰɼৄࡉͳ༰ʹ͍ͭͯɼࣗ͝Ͱ͓͔֬Ίͩ͘͞ ͍ɽ ‣ ͜ͷൃදͰɼۙߦΘΕ͍ͯΔʮQʹ͍ͭͯͷٞʯΛ ͰίϯύΫτʹઆ໌͢Δ͜ͱΛඪͱ͠·͢ɽ !4
͜ͷϓϨθϯςʔγϣϯͰѻ͏༰ ‣ ·ͨɺຊൃදͷ༰݄ʹ/BUVSFͰൃද͞Ε্ͨهͷهࣄͷ༰Λ ؚΈ·͢ɻ ‣ ͜ͷهࣄɺֶज़తͳݚڀʹ͓͍ͯ1ͷෆదͳ༻ʢओʹɺ1ΛԾઆͷ ཱূͷࠜڌͱ͢Δ͜ͱʣʹରͯ͠ͷܯΛ໐Β͢ͷͰ͢ɻ !5
ˎ ‣ εϥΠυͰɺQʹ͍ͭͯͷਖ਼͍͠ཧղͷͨΊʹɺվΊͯQͱͳʹ͔ʹ ͍ͭͯهࡌͨ͠εϥΠυ͕͋Γ·͕͢ɺ۩ମతʹઆ໌͢Δ༧ఆ͋Γ· ͤΜɻ ‣ ࠓճհ͢ΔจͰͷQޡ༻ͷఆֶज़తͳݚڀͰ͕͢ɺࠓճͷΠϕ ϯτ͓ӽ͠ͷօ༷ͷதʹɺϏδωεͰ༻͢Δํʑ͍Βͬ͠ΌΔͱࢥ ͍·͢ɻΑͬͯɺจͷ༰Λͦͷ··͢ͷͰͳ͘ɺඞཁͳՕॴͷΈந ग़ͯ͠ɺൃදऀͷҙݟΛՃ͑ͯهड़͍ͯ͠·͢ɻ
‣ Ҏ্ͷʹɺྃ͝ঝ·͢Α͏͓ئ͍͍ͨ͠·͢ɻ !6
ൃදͷαϚϦʔ* ‣ ʹ৺ཧֶܥͷจࢽ#BTJDBOE"QQMJFE4PDJBM1TZDIPMPHZͰɼQ ͷ༻͕ېࢭ͞Εͨɽ ‣ ͦͷ͋ͱɼ/BUVSFɼ4DJFODF/FXT 4UBUJTUJDJBOͳͲͰɼQʹجͮ͘Պֶత ͳจɼ࠶ݱੑͷอূͳͲͷ͔Βܯ͕໐Β͞Ε·ͨ͠ɽ ‣ ʹɼ"4"ʢΞϝϦΧ౷ܭֶձʣ͕Qʹؔ͢Δ໌ΛൃදɽQͷ
༻ʹؔ͢ΔͭͷݪଇΛఏࣔɽ ‣ ݄ͷ"NFSJDBO4UBUJTUJBOͰʮQ͔Β٫͠ɼσʔλղੳ ࣍ͷεςʔδʯͱ͍͏ಛू͕·ΕΔɽ ‣ QΛ༻͍ͨೋݩతͳൃ͔Β٫͠Α͏ʂ ‣ ʮ౷ܭతʹ༗ҙʯͱ͍͏ݴ༿ΛࣺͯΑ͏ʂ ‣ QΛཧ༝ʹͨ͠ʮ݁ʯΛΊΑ͏ʂ ‣ Q͕খ͘͞Ͱؔ࿈͕ͳ͍߹͋ΕɼQ͕େ͖ͯؔ͘࿈͕͋Δ ߹͋Δɽ ‣ Qɼֶज़తʹҙຯ͕͋Δ͜ͱͱৗʹಉٛͰͳ͍ !7 ͜ ͜ ͷ ྲྀ Ε จ ͷ ֓ ུ
ൃදͷαϚϦʔ** ‣ ʮ౷ܭతʹ༗ҙʯͱ͍͏ݴ༿͕Ռׂ͖ͨͯͨ͠ʹมΘΔͷଘࡏ͠ͳ͍ ͕ɼࢲͨͪ࣍ͷͭΛҙࣝͯ͠ߦಈ͍ͯ͘͠ඞཁ͕͋Δɽ ‣ "DDFQU6ODFSUBJOUZʢσʔλղੳͷෆ࣮֬ੑΛड͚ೖΕΔ͜ͱʣ ‣ #F5IPVHIUGVMʢσʔλͷղੳʹରͯ͠৻ॏͰɼࢥྀਂ͋͘Δ͜ͱʣ ‣ #F0QFOʢσʔλͷղੳͷϓϩηεఆͳͲΛެ։͢Δ͜ͱʣ
‣ #F.PEFTUʢσʔλͷղੳͷ݁Ռʹ͍ͭͯݠڏͰ͋Δ͜ͱʣ ‣ σʔλͷղੳΛධՁ͢ΔࡍͷϙΠϯτม͍͑ͯ͘ඞཁ͕͋Δɽ ‣ ಘΒΕͨσʔλղੳͷ݁Ռɼ࠶ݱՄೳͳͷ͔ʢݚڀతʹରͯ͠ɼσ βΠϯ͕దʹͳ͞Ε͍ͯΔ͔ɼ·ͨख๏ͷબͷϩδοΫద͔ʣ ‣ σʔλղੳͷՁʮ݁Ռʯʹ͋ΔͷͰͳ͍ɽղੳΛߦͬͨʮલఏʯɼ ͦͷաఔͰஔ͔ΕͨʮԾઆʯेʹٞ͞Εͨͷ͔ɽ ‣ ྫ͑ɼϞσϧબͰతʹ4UFQXJTF3FHSFTTJPOΛ͍ͯͨ͠Βɼ ͦΕϞσϧʹରͯ͠ͷྀ͕໌Β͔ʹΓͳ͍ͱࢥͬͯྑ͍ɽ !8 จ ͷ ֓ ུ
ൃදͷαϚϦʔ*** ‣ ͜ͷಛू߸ʹدߘ͍ͯ͠Δͷɼ΄ͱΜͲ͕ݚڀऀͳͷͰɼ༰ͷεϙοτ ಛʹݚڀͱ͚ΒΕ͍ͯΔɽ ‣ ࣮ࡍɼ࣏ݧͳͲʹ͓͍ͯQͷ༗༻ੑʹ͍ͭͯɼ༄ ͳͲͰड़ ΒΕ͍ͯΔ௨Γɼঢ়گ࣍ୈͰ͋Δɽ ‣
͔͠͠ͳ͕ΒɼʮQͷޡ༻ʯͱʮ౷ܭత༗ҙͷཚ༻ʯɼσʔλղੳΛߦͬ ͨࡍͷϨϙʔτͰʑʹ͢Δɽ ‣ ྫ͑ɺճؼϞσϧʹ͓͚ΔʮQʯʮ"*$ʯͷཚ༻͕ͦͷҰྫͰ͋ Δɻ ‣ 4UFQXJTF๏-േଇਖ਼ଇԽͰਖ਼͍͠Ϟσϧ͕બͰ͖͍ͯΔͱ͍͏Α͏ ͳʮա৴ʯ͕ຮԆ͍ͯ͠Δɽ ‣ ࠓͦ͜ɺσʔλͷऔಘ͔ΒɼϞσϧͷߏஙɼϨϙʔτͷ࡞·Ͱͷɼσʔλ ղੳͷϑϩʔΛݟ͠ɼࣗͨͪͷσʔλղੳʹదͨ͠ղੳϑϩʔΛ࡞Γ ͢ඞཁ͕͋Δɽ !9 ࢲ ͨ ͪ Ͳ ͏ ͢ Δ ͔ Moving to a World Beyond “p < 0.05”
࣍ ‣ ΠϯτϩμΫγϣϯ ‣ ͜ͷൃදͰѻ͏༰ͱɼൃදͷαϚϦʔ ‣ Qͷ᠘ɻ ‣ QͱԿ͔ʁ ‣
QΛ͏᠘ʮݩͷఆʯͰ͋Δʢ͕͜͜ϙΠϯτʂʣ ‣ Qʹର͢Δ"4"ͷ1SJODJQMF ‣ QͷΛड͚ͯɼԿΛ͖͔͢ʢ.PWJOHUPBXPSMECFZPOElQzʣ ‣ ʮ౷ܭత༗ҙʯ͔Βͷ٫ ‣ "50.ͱ͍͏ݪଇɽ ‣ ݱ࣮తͳΨΠυϥΠϯͱͯ͠ʢൃදऀͷҙݟʣ ‣ ࢲ͕ͨͪɺʮQͷੈքʯ͔Β٫͢ΔͨΊʹ !10
QͱԿ͔*ʢԾઆݕఆ֓આʣ ‣ ౷ܭతԾઆݕఆͱʁ ‣ ؼແԾઆΛغ٫͠ରཱԾઆΛࢧ࣋͢Δ͔ɼຢؼແԾઆΛغ٫͠ͳ͍͔Λ ؍ଌʹج͍ܾͮͯΊΔͨΊͷ౷ܭతखଓ͖ɻ ‣ ͦͷखଓ͖ɼؼແԾઆཱ͕͍ͯ͠Δʹ͔͔ΘΒͣغ٫͢Δ͕֬Ћ ҎԼʹͳΔΑ͏ʹܾΊΒΕΔɻ͜ͷЋΛ༗ҙਫ४ͱ͍͏ɻ ‣
1ͱʁ ‣ ༩͑ΒΕͨσʔλͷʹରͯ͠ɺؼແԾઆΛغ٫Ͱ͖Δ࠷খͷ༗ҙਫ४ ‣ 1ͱʁʢטΈࡅ͘ͱʣ ‣ 1ͱɺಛఆͷ౷ܭϞσϧͷͱͰɺσʔλͷ౷ܭతͳཁʢྫ͑ ͭͷ܈ͷฏۉͷࠩɺճؼͷਪఆʣ͕ໃ६͢ΔఔΛࣔ͢ࢦඪʂ ‣ ࢿྉʹɺཧతͳ1ͷఆ͕ٛॻ͔Ε͍ͯΔɻ !11
QͱԿ͔**ʢԾઆݕఆͷྫɿճؼʣ ‣ &YBNQMFઢܗճؼϞσϧ ‣ ྫ͑ɺσʔλʹઢܗճؼϞσϧΛͯΊͨ߹ͷɺճؼЌʹର͢Δ ݕఆͰɺɹɹɹɹɹɹ͓ΑͼɹɹɹɹɹɹͰ͋Δɻ ‣ ͜ͷͱ͖ɺ༗ҙਫ४ͷݕఆʢQͰ༗ҙͱ͢ΔݕఆʣɺؼແԾઆ ͕ਖ਼͍͠ʢЌʣͳͷʹɺЌͰͳ͍ͱͯ͠͠·͏֬ΛҎԼʹ͑ ΔΑ͏ͳݕఆΛߦ͍ͬͯΔ͜ͱʹରԠ͢Δɻ
‣ ҙ͖͢͜ͱ ‣ 5ZQF**&SSPSʹ͍ͭͯԿݴٴ͍ͯ͠ͳ͍ɻ ‣ σʔλऔಘɺϞσϧͷਖ਼͠͞ʹ͍ͭͯҰݴٴ͞Ε͍ͯͳ͍ɻ ‣ Өڹͷେ͖͞ʹ͍ͭͯҰݴٴ͠ͳ͍ɻ !12 H0 : β = 0 H1 : β ≠ 0
QΛ͏᠘ʮݩͷఆʯͰ͋Δ* ‣ Ծઆݕఆͷཧͷ݁ՌɺҰൠతʹ ‣ ɹɹɹɹɹ͕౷ܭϞσϧɹɹɹɹɹɹɹɹɹɹɹɹ͔ΒϥϯμϜͳඪຊ͕ ಘΒΕͨͱԾఆ͢Δɻ ‣ ͱ͍͏ຐ๏ͷ͜ͱ͕࠷ॳʹ͍͍ͭͯΔɻ ‣ σʔλղੳͰɺ࣍ͷ͕ͭΘ͔Βͳ͍ɻ
‣ σʔλ͕ɺຊʹΓ͍ͨूஂ͔ΒϥϯμϜʹऔΒΕ͍ͯΔ͔Ͳ͏͔ ‣ σʔλ͕ɺͲΜͳϞσϧ͔Βੜ͞Ε͔ͨ ‣ ࣮ࡍͷղੳͰɺຐ๏ͷ͜ͱͷେલఏ͔Βٙ͏ඞཁ͕͋Δɻ ‣ ਪఆྔɺͦͷݕఆɺ͜ΕΒʹ͍ͭͯेͳۛຯͱߟͷ্ʹ͔͠ҙຯΛ ࣋ͨͳ͍ɻ !13 X1 , . . . , XN {f(x; θ) ; θ ∈ Θ ⊂ R} ݱ࣮Ͳ͏ͩʂʁ
QΛ͏᠘ʮݩͷఆʯͰ͋Δ** ‣ ʲྑ͘ͳ͍ղੳϨϙʔτͷྫʳ ‣ σʔλͷऔಘํ๏ɾղੳϞσϧͷଥੑʹ͍ͭͯͷใࠂ͕Ͱ͖͍ͯͳ͍ ‣ 1ɺಛఆͷ౷ܭతͳج४͕ߴ͍͜ͱΛɺஅͷཧ༝ͱ͍ͯ͠Δɻ ‣ ͜ͷΑ͏ͳจҰఆଘࡏ͍ͯͯ͠ɺ·ͨۀʹ͓͚ΔσʔλղੳͷϨ ϙʔτͰࢄݟ͞ΕΔɻ
!14 ʲݕূʳ 1ͦΜͳʹ৴༻Ͱ͖Δͷ͔ʂʁ
QΛ͏᠘ʮݩͷఆʯͰ͋Δ*** &YBNQMFͦͷ̍ ‣ ҎԼͷϞσϧ͔ΒɺσʔλΛൃੜͤ͞Δɻ ‣ ݁Ռมʹର͢ΔϞσϧɺ ‣ ͜ͷͱ͖ɺαϯϓϧΛͱͯ͠ɺճ܁Γฦ͠σʔλΛൃੜͤͨ͞ɻ ‣ ൃੜͤͨ͞σʔλʹɺͯ͢ͷ9Λઆ໌มͱͨ͠ઢܗճؼϞσϧΛͯΊ
ͯɺճؼΛਪఆ͠ɺQΛܭࢉͯ͠ɺΛԼճͬͨճΛɺҎԼͷද ʹ·ͱΊͨɻ !15 X1 ∼ N(0,1) X2 = X1 + N(0,1) X3 ∼ Bernoulli(expit(X1 + X2 )) X4 = |X1 + X3 X2 | Y = 0.2X2 + 0.2X3 + N(0,1) X2 X1 X3 X4 ย ༗ҙʹͳͬͨ ճ ܁Γฦ͠ճճதɺQͰ༗ҙʹͳͬͨճ
QΛ͏᠘ʮݩͷఆʯͰ͋Δ*** &YBNQMFͦͷ ‣ ղੳΛ͍ͯͯ͠ɺɹ͕ޮՌ͕͋ΔΑ͏ͳ݁Ռ͕΄͍͠ͱࢥͬͨʂ ‣ มΛൈ͍ͯΈΑ͏ɻɻɻ ‣ ݁Ռมʹର͢ΔϞσϧʹؚ·Εͳ͍ม͕༗ҙʹͳͬͨɾɾɾ ‣ αϯϓϧΛߋʹ૿ͯ͠ɺ/ʹͨ͠Β
‣ ؆୯ʹQΛԼճΔճΛ૿͢͜ͱ͕Ͱ͖ͨɻͭ·ΓɺQͳΜͯϞσ ϧͷԾఆͱαϯϓϧͰ͍͔Α͏ʹίϯτϩʔϧՄೳɻ/ͻͲ ͍ɻ !16 X4 / X1 X3 X4 ย ༗ҙʹͳͬͨ ճ / X1 X3 X4 ย ༗ҙʹͳͬͨ ճ / X1 X3 X4 ย ༗ҙʹͳͬͨ ճ
17 ༗ҙʹ͍ͨ͠มɺ༗ҙʹͰ͖Δʂ Ϗοάσʔλ࠷ߴͰ͢Ͷὑʢൽʣ
Qʹର͢Δ"4"ͷQSJODJQMF 8BTTFSTUFJO3- -B[BS/" 1ɺσʔλͱ͕ࣗԾఆͨ͠౷ܭϞσϧͷໃ६ͷఔΛࣔ͢Ͱ͋Δɻ 1ɺௐ͍ͯΔԾઆ͕ਖ਼͍֬͠ɺσʔλ͕ۮવͷΈͰ͑ΒΕͨ֬ ΛଌΔͷͰͳ͍ɻ
Պֶతͳ݁ɺϏδωεࡦʹ͓͚Δܾఆɺ1͕͋ΔᮢΛ͔͑ͨ Ͳ͏͔Λࠜڌʹ͢Δ͖Ͱͳ͍ɻ దͳ౷ܭతਪͷͨΊʹɺݚڀͷதͰௐΔԾઆͷɺσʔλऩूͷࡍ ʹߦͬͨͯ͢ͷܾఆɺ࣮ߦͨͯ͢͠ͷ౷ܭղੳɺͦͯ͠ܭࢉͨͯ͢͠ ͷ1Λݚڀऀ։͖ࣔ͢Ͱ͋Δɻ 1౷ܭత༗ҙੑɺޮՌͷେ͖݁͞ՌͷॏཁੑΛҙຯ͠ͳ͍ɻ 1ɺͦΕ͚ͩͰ౷ܭϞσϧԾઆʹؔ͢ΔΤϏσϯεͷɺΑ͍ࢦඪͱ ͳΒͳ͍ɻ !18
࣍ ‣ ΠϯτϩμΫγϣϯ ‣ ͜ͷൃදͰѻ͏༰ͱɼൃදͷαϚϦʔ ‣ Qͷ᠘ɻ ‣ QͱԿ͔ʁ ‣
QΛ͏᠘ʮݩͷఆʯͰ͋Δʢ͕͜͜ϙΠϯτʂʣ ‣ Qʹର͢Δ"4"ͷ1SJODJQMF ‣ QͷΛड͚ͯɼԿΛ͖͔͢ʢ.PWJOHUPBXPSMECFZPOElQzʣ ‣ ʮ౷ܭత༗ҙʯ͔Βͷ٫ ‣ "50.ͱ͍͏ݪଇɽ ‣ ݱ࣮తͳΨΠυϥΠϯͱͯ͠ʢൃදऀͷҙݟʣ ‣ ࢲ͕ͨͪɺʮQͷੈքʯ͔Β٫͢ΔͨΊʹ !19
౷ܭత༗ҙ͔Βͷ٫* ‣ &EHFXPSUI 'JTIFS Ͱ1ɺ݁ՌͷߟͷͨΊͷಓ۩ʢ1 ͷͦͷͷΛؾʹ͍ͯͨ͠ʣ ‣ /FZNBO1FBSTPOͷ౷ܭతԾઆݕఆ͕·Γɺ1͕ੜ·Εʮ༗ҙͰ͋
Δ͜ͱʯʮ4UBUJTUJDBMMZ4JHOJpDBOUʯͱ͍͏ݴ༿ੜ·ΕΔɻ ‣ ͋Δਫ४ΛԼճͬͨʢ༗ҙʣʮҙຯ͕͋Δʯͱ͍͏ಾͷ͕ؔੜ·ΕΔɻ ‣ ͍·ɺ༗ҙ͡Όͳ͚ΕɺQVCMJTI͠ͳ͍ͱ͍͏ѱ͍෩ைʹͳΓɺՊֶతͳ จͰग़൛͞ΕΔͷ༗ҙͳͷ͔Γɾɾɾʢग़൛όΠΞεʣ ‣ ͜ͷΑ͏ͳޡΓΛͳͨ͘͢Ίʹɺʮ4UBUJTUJDBMMZ4JHOJpDBOUʢ౷ܭతʹ༗ ҙʣΘͳ͍ʯΑ͏ʹ͠Α͏ʂʢ8BTTFSTUBJO ɻ ‣ ࣍ͷ̐ͭͷݪଇʢ"50.ʣʹج͍ͮͨղੳͱղੳͷධՁΛਪ͢Δɻ !20 1 ޡ ༻ ͷ ྲྀ Ε ౷ܭతʹ༗ҙ ≠ ॏཁͳ݁Ռ จ ͷ ओ ு
"50.ͱ͍͏ݪଇ* ‣ "DDFQU6ODFSUBJOUZʢෆ࣮֬ੑΛड͚ೖΕΔʣ ‣ σʔλͷऔಘํ๏ϞσϧͷԾఆ࣍ୈͰɺղੳͷ݁Ռมಈ͢Δɻ ‣ ղੳͷ݁ՌʹɺΒ͖͕ͭ͋Δʢ͖ͪΜͱهࡌʣɻ ‣ Ґਪఆͷࢄਪఆͷ৴པ۠ؒΛඞͣॻ͘ ‣
#F5IPVHIUGVMʢࢥྀਂ͘ʣ ‣ ʲσʔλͷղੳऀ͕ҙ͖ࣝ͢͜ͱʳ ‣ ௐࠪղੳͷҙਤ ‣ ҙຯͷ͋ΔޮՌͷେ͖͞ ‣ తʹର͢ΔɺσʔλΛऔಘํ๏ͷద͞ɻ ‣ σʔλʹͯΊΔख๏ͱɺख๏ͷ౷ܭతੑ࣭ͷཧղɻ ‣ ྫ͑ɺઢܗճؼϞσϧͰ͍͑ɺࢄੑ !21
"50.ͱ͍͏ݪଇ** ‣ #F5IPVHIUGVMʢࢥྀਂ͘ʣଓ͖ ‣ ʲղੳϨϙʔτΛݟΔଆ͕ҙࣝ͢Δ͖͜ͱʳ ‣ ಘΒΕͨਪఆͷɺ࣮ࡍతͳ࣮༻తͳҙຯ ‣ ਪఆͷਖ਼֬͞ʢΒ͖ͭʣ ‣
༻ͨ͠ϞσϧͷԾఆͷదੑ ‣ ղੳऀͷϞσϧʹର͢Δཧղ ‣ ෳϞσϧͷൺֱͷ༗ແൺֱͨ͠߹ͷ݁ՌͷมԽͱߟ ‣ Ҏ্Λɺ࠶ݱͰ͖ΔϨϕϧͰɺϨϙʔτʹ·ͱΊΒΕ͍ͯΔ͔ !22 ʲϙΠϯτʳ σʔλղੳͷධՁɺQͦͷଞͷ౷ܭతईͰߦΘΕΔ͖Ͱͳ͍ɻ ઌߦݚڀௐࠪͷਂ͞ݚڀσβΠϯͱσʔλͷ࣭Ծఆͨ͠ϝΧχζϜͷ ଥੑݱ࣮తͳՁൃݟͷ৽نੑΛ૯߹ͯ͠அ͖͢ ʲΞΠσΞʳ ݁ՌΛCMJOEͯ͠ϨϙʔτΛಡΜͰՁΛஅ͢Δͷͭͷํ๏Ͱ͋Δ
"50.ͱ͍͏ݪଇ*** ‣ #FUIPVHIUGVMʢࢥྀਂ͘ʣଓ͖ ‣ ϞσϧͷଥੑධՁʹ͍ͭͯɺQҎ֎ʹఏҊ͞Ε͍Δ ‣ ϕΠζҼࢠୈ̎ੈQʢ4FDPOE(FOFSBUJPOQWBMVFʣͳͲ ‣ ͨͩ͠ɺͦΕୈ̎ͷQΛੜΈग़͢ͷͰ͋ͬͯͳΒͳ͍ ‣
#F0QFOʢެ։͢Δʣ ‣ σʔλղੳͷՁɺσʔλͦͷͷͷ٬؍ੑɻ ‣ ͔͠͠ɺσʔλͷऔಘ͔ΒɺղੳʹࢸΔ·ͰɺղੳऀઐՈͷʮओ؍ੑʯ ʮஅʯʹґଘ͢Δ෦͕େ͖͍ɻ ‣ ݁ՌΛಡΈղͨ͘Ίʹɺഎޙʹ͋Δʮߟ͑ํʯ͕ඞཁͰɺͦΕͳ͠ʹୈ ऀతͳϨϏϡʔ͕͘͠ɺ٬؍ੑ͕ଛΘΕΔɻ ‣ ղੳͷ٬؍ੑΛอ࣋͢ΔͨΊʹɺσʔλղੳͷϓϩηεΛެ։͠ɺஔ ͔Ε͍ͯΔఆͳͲʹ͍ͭͯৄࡉͳϨϙʔτΛ࡞͠ใࠂ͢Δ͖ !23
"50.ͱ͍͏ݪଇ*7 ‣ #F.PEFTUʢݠڏͰ͋Ζ͏ʣ ‣ ౷ܭతͳख๏ʹɺͦͦݶք͕͋Δ͜ͱΛཧղ͢Δɻ ‣ ౷ܭϞσϧෳࡶͳݱ࣮Λ࣮ʹ࠶ݱ͢Δख๏Ͱͳ͘ɺΉ͠Ζݱͷ ʮ؆қܕʯɻ ‣ ༻͞ΕͨϞσϧ͕ʮਅͷϞσϧʯͰͳ͍͜ͱΛཧղ͓ͯ͘͠
‣ ಘΒΕͨ݁ՌɺʮϞσϧ͕ਖ਼͍͠ʂʯͱ͍͏ԾఆͷͱͰ͔͠ҙຯͷͳ ͍ͷ ‣ ࣗͷग़ͨ͠ղੳ݁Ռɺ݁ʹରͯ͠ʮͲΜͳؒҧ͍ͷՄೳੑ͕͋Δ ͔ʯΛߟ͓͑ͯ͘ඞཁ͕͋Δɻ ‣ ݚڀʹ͓͍ͯɺಉ͡ςʔϚʹରͯ͠ɺෳͷಉ༷ͷݚڀ͕ߦΘΕͯɺಉ ͡Α͏ͳ݁Ռ͕ಘΒΕͯɺ͡ΊܾͯఆతͳͷͱͳΔɻ ‣ ݚڀऀɺ࠶ݱੑΛอূ͢ΔΑ͏ͳݚڀΛྭ͖͢Ͱ͋ΓɺͦͷҙຯͰ ݚڀͷखॱɺ༻ͨ͠σʔλʹ͍ͭͯɺެදΛߦ͏͖Ͱ͋Δɻ !24
࣍ ‣ ΠϯτϩμΫγϣϯ ‣ ͜ͷൃදͰѻ͏༰ͱɼൃදͷαϚϦʔ ‣ Qͷ᠘ɻ ‣ QͱԿ͔ʁ ‣
QΛ͏᠘ʮݩͷఆʯͰ͋Δʢ͕͜͜ϙΠϯτʂʣ ‣ Qʹର͢Δ"4"ͷ1SJODJQMF ‣ QͷΛड͚ͯɼԿΛ͖͔͢ʢ.PWJOHUPBXPSMECFZPOElQzʣ ‣ ʮ౷ܭత༗ҙʯ͔Βͷ٫ ‣ "50.ͱ͍͏ݪଇɽ ‣ ݱ࣮తͳΨΠυϥΠϯͱͯ͠ʢൃදऀͷҙݟʣ ‣ ࢲ͕ͨͪɺʮQͷੈքʯ͔Β٫͢ΔͨΊʹ !25
ࢲͨͪͲ͏͢Ε͍͍ͩΖ͏ʁ ‣ ͕ࣗσʔλղੳ͍ͯ͠ΔτϐοΫʹ͓͍ͯɺʮ1ʹՁ͕͋Δ͔Ͳ͏ ͔ʁʯͱ͍͏࣭Λߟ͑Δ͜ͱͰ͋Δɻ ‣ ͦͷͨΊʹͭͷ࣭ʹ͢Δɻ ‣ σʔλऔಘɺ͖ͪΜͱσβΠϯ͞Ε͓ͯΓɺ3$5ʢϥϯμϜԽൺֱ࣮ ݧʣͰ͋Δ͔ʁ ‣
ղੳʹ༻͍ΒΕΔϞσϧͷԾఆଥ͋Δ͜ͱ͕ɺઌߦจݙͳͲͷ݁Ռ͔ Β໌Β͔Ͱ͋Δ͔ʁ ‣ ͍ͣΕ͔Ұํ͕/0Ͱ͋ΔͳΒɺ1Λར༻ͨ͠Ծઆݕఆͷ݁Ռ͔Βɺ҆қʹ ݁Λಋ͘ͷదͱݴ͑ͳ͍ɻ ‣ ͳͥͳΒɺ1͕ʮҙຯΛ࣋ͭʯͷɺ࣮ݧܭըͱϞσϧͷԾఆ͕ଥͳ ߹Ͱ͋ΓɺͦΕҎ֎1Λܭࢉ͚ͨͩ͠Ͱ͋Δɻ !26
ଟ͘ͷղੳʮతʯͰͳ͘ʮσʔλʯ͔Β࢝·Δ* ‣ ύλʔϯͭɻ ‣ ʢ"ʣత͕͋ͬͯɺσʔλͷूΊํ͔ΒσβΠϯ͢Δ ‣ ʢ#ʣख࣋ͪͷσʔλ͔Βɺతʹରͯ͠Ξϓϩʔν͢Δ ‣ ͪΖΜɺʢ"ʣͷ΄͏͕σʔλղੳͱͯ͠దͳΞϓϩʔνͰ͋Δ͕ɺ ࣮ࡍʢ#ʣͷΑ͏ʹͳͬͯ͠·͏ͷɺํͷͳ͍͜ͱʂ
‣ ӡಈྔ͕ଟ͍ਓ΄Ͳɺ࣬ප͕Լ͕Δ͔ʁͱ͍͏ٙʹ͑Δ߹ʹɺ 3$5·ͰΔͱ͍͏ͷͳ͔ͳ͔͍͠ɻ ‣ ࣮ࡍɺۙͳਓଌఆػثΛͯ͠ɺาߦྔͱੜମࢦඪͳͲΛൺֱ͢ Δ͔͠ͳ͍ɻ ‣ ͜ͷ߹ͷҙ ‣ ۙͳਓʹຊશࠃ͔ΒͷϥϯμϜαϯϓϧͰͳ͍ͷͰɺ·ͣ݁Ռ ҰൠԽͰ͖ͳ͍ɻ ‣ ͦͦଌఆػثΛਅ໘ʹ͏ͷɺ݈߁ҙࣝͷߴ͍ਓͳͷͰɺ σʔλऔಘͷόΠΞε͕ੜ͍ͯ͡Δɻ !27
ଟ͘ͷղੳʮతʯͰͳ͘ʮσʔλʯ͔Β࢝·Δ** ‣ αϯϓϧͷऔಘʹόΠΞε͕͋Δ͜ͱΛ౿·্͑ͨͰɺؔੑΛݟΔͨΊʹ ɺઢܗճؼϞσϧΛͯΊͯɺճؼΛݟΕ͍͍ʂ ‣ ͱ͍͚ͯ͠ͳͯ͘ɺʮϞσϧͷଥੑʯΛ͖ͪΜͱઆ໌Ͱ͖ΔΑ͏ʹͯ͠ ͍͔ͳ͍͚ͯ͘ͳ͍ɻ ‣ ͦͦ9ͱ:ͲΜͳؔͳΜ͚ͩͬʁ ‣
Ϟσϧͷଥੑʁมຊʹઢܗʹޮ͍ͯΔͷʁͳͲͳͲ !28 ༗ҙͩʂʂʂʂ ٩ ๑ÒТÓ๑ ۶
ଟ͘ͷղੳʮతʯͰͳ͘ʮσʔλʯ͔Β࢝·Δ*** ‣ ઌ΄ͲͷઢܗճؼϞσϧͷ݁Ռɺӈ ͷσʔλΛ༻͍ͨͷɻ ‣ ͔֬ʹɺԿ͔ͷ͕ؔ͋Γͦ͏͚ͩ Ͳɺ҆қʹઢܗʹ͍͍ͯ͠ͷʁ ‣ ͜͏͍͏ͱ͖ɺʮઢܗճؼϞσϧΛ ͯΊͨͱ͖ͷԾఆʯΛ͍ͬͯΔ
͔Ͳ͏͔Ͱɺஅ͕Ͱ͖Δɻ ‣ ԼͷਤʮͯΊWTࠩʯͷϓ ϩοτɻઢܗճؼϞσϧͷ߹ʮ ࢄ͕ҰఆʯͳͷͰɺΒͳ͍ ͣɻ ‣ ͔͠͠ɺ໌Β͔ʹ࣍ͷ͕ͬͯ ͍ͯɺ͜ΕͰઢܗճؼϞσϧͷԾఆ ຬͨ͞Ε͍ͯͳ͍ɻ !29
ଟ͘ͷղੳʮతʯͰͳ͘ʮσʔλʯ͔Β࢝·Δ*7 ‣ ࣍ͷ߲·ͰϞσϧʹؚΊΔͱɺ ࠩʹ͕Βͣɺ͓ΑͦࢄҰ ఆʹͳͬͨɻ ‣ ઢܗճؼϞσϧͷԾఆɺཱͯ͠ ͍Δͱߟ͑ͯྑͦ͞͏ɻ ‣ ࣍ʹɺ͜͜Ͱਪఆ͞Εͨʮճؼ
ʯ͕ɺʮ9͔Β:ͷӨڹʯͱߟ͑ ΒΕΔͱͯ͠ɺ͜ͷճؼͲͷ ఔΒͭ͘ͷ͔ʁ ‣ ͜ͷ࣭ʹ࣍ͷͭΛ࣋ͬͯ͑ Δɻ ‣ ̍ʣۙࢄͱ৴པ۠ؒͷهࡌ ‣ ̎ʣ#PPUTUSBQਪఆྔͷώετά ϥϜͱɺTVNNBSZΛهࡌ !30
ଟ͘ͷղੳʮతʯͰͳ͘ʮσʔλʯ͔Β࢝·Δ7 ‣ σʔλղੳͷऴΘΓʹɺ࣍ͷͭඞͣνΣοΫ͢Δɻ ‣ ʮ౷ܭతͳԾఆʯʹର͢Δໃ६࠷খݶʹ͑ΒΕ͍ͯΔ͔ʁ ‣ σʔλղੳͷ݁Ռͱɺݱ࣮తͳࢲͨͪͷײ֮ʹେ͖͗͢Δᴥᴪͳ͍͔ʁ ‣ Ϩϙʔτͷ࡞ ‣
·ͣɺσʔλͷऔಘͱɺࠓճͷղੳ݁Ռͷద༻ՄೳൣғΛ໌ه͢Δɻ ‣ ·ͨɺͲͷΑ͏ͳղੳΛݕ౼͠ɺ్தͰͲΜͳ݁ՌΛಘͯɺ࠷ऴ݁Ռʹ ࢸ͔ͬͨΛ໌ه͢Δɻ ‣ ݱ࣮తͳײ֮ͱͷᴥᴪ͕ͳ͍͔ɺᴥᴪ͕͋ΔͷͰ͋ΕͲΜͳݪҼ͔Λॻ ͘ɻ ‣ ྫ͑ɺʮʓʓͷΑ͏ͳม͕Γͯͳ͍ʯͳͲ !31 σʔλͷղੳΛߦͬͨϨϙʔτͰɺਪఆྔͷΒ͖ͭͷهࡌ͕ͳ͍߹ɺ ͦΕσʔλղੳͰͳ͍ɻ
·ͱΊ ‣ ͜͜·ͰɺσʔλղੳͷҰྫΛ͖͕ࣔͯͨ͠ɺಛʹʢ#ʣख࣋ͪͷσʔλ͔ Βɺతʹରͯ͠Ξϓϩʔν͢ΔσʔλղੳͰɺ ‣ ղੳରͱͳΔݱʹରͯ͠ɺਂ͍͕ࣝඞཁ ‣ ౷ܭֶʹର͢Δਂ͍ཧղͱɺͦΕͷԠ༻ೳྗ͕ඞཁɻ ‣ ͜ΕΒͭͰɺσʔλղੳͰ͋Δɻ·ͣɺࣗͨͪͷߦ͍ͬͯΔʮσʔλղ
ੳʯͷϑϩʔΛݟͯ͠΄͍͠ɻ ‣ 1ଞͷ౷ܭతͳج४Λɺओுͷࠜڌͱ͍ͯ͠ͳ͍͔ɻ ‣ ༻͍ͯ͠Δղੳπʔϧेͳཧղ͕͋Γɺਖ਼͍͠ӡ༻Λߦ͍ͬͯΔ͔ ʢ·ͨɺղੳޙࠩϓϩοτͳͲΛνΣοΫ͠ɺϨϙʔτܝࡌ͍ͯ͠Δ ͔ʁʣɻ ‣ औಘ͞ΕͨσʔλʹόΠΞεଘࡏ͍ͯ͠ͳ͍͔ʁ ‣ ݁ՌͷաͳҰൠԽɺߦΘΕ͍ͯͳ͍͔ʁ ‣ ղੳ݁Ռʹɺۙࢄ৴པ۠ؒ#PPUTUSBQਪఆྔͷΒ͖ͭͷϓϩοτͷ ͖ͭͪΜͱܝࡌ͍ͯ͠Δ͔ʁ !32 ν Σ ο Ϋ ߲
33 -FU`TNPWFUPBXPSMECFZPOElQ zUPHFUIFS தଜɹൟ ܚጯٛक़େֶେֶӃ UPNPTIJHFOBLBNVSB!HNBJMDPN ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ
ࢀߟจݙ ‣ "NSIFJO 7 (SFFOMBOE 4 BOE.D4IBOF # 4DJFOUJTUTSJTFVQ
BHBJOTUTUBUJTUJDBMTJHOJpDBODF/BUVSF ‣ 'JTIFS " 4UBUJTUJDBM5FTU /BUVSF ‣ )FME - BOE0UU . 0OQ7BMVFTBOE#BZFT'BDUPST"OOV3FW 4UBU"QQM ‣ )VOH + 0/FJMM 3 #BVFS 1 BOE,PIOF , 5IF#FIBWJPSPGUIF 17BMVF8IFOUIF"MUFSOBUJWF)ZQPUIFTJTJT5SVF#JPNFUSJDT ‣ 4FMMLF 5 #BZBSSJ 4 BOE#FSHFS + $BMJCSBUJPOPGQ7BMVFTGPS 5FTUJOH1SFDJTF/VMM)ZQPUIFTJT5IF"NFSJDBO4UBUJTUJDJBO r ‣ 8BTTFSTUFJO 3 BOE-B[BS / 5IF"4"`T4UBUFNFOUPOQ7BMVFT $POUFYU 1SPDFTT BOE1VSQPTF 5IF"NFSJDBO4UBUJTUJDJBO r ‣ 8BTTFSTUFJO 3 4DIJSN " BOE-B[BS / .PWJOHUPB8PSME #FZPOEQ 5IF"NFSJDBO4UBUJTUJDJBO ‣ ༄ᴲ Qྟচݚڀσʔλղੳ݁Ռใࠂʹ༗༻ͳ༏ΕͨϞϊαγͰ ͋Δܭྔੜֶ !34