Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Path Copying による永続データ構造
Search
toyama
July 18, 2020
Science
0
580
Path Copying による永続データ構造
toyama
July 18, 2020
Tweet
Share
More Decks by toyama
See All by toyama
全文検索のアルゴリズムとデータ構造
toyama1710
0
280
Other Decks in Science
See All in Science
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
990
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
550
データベース10: 拡張実体関連モデル
trycycle
PRO
0
750
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
260
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
720
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
510
MCMCのR-hatは分散分析である
moricup
0
380
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
760
科学で迫る勝敗の法則(電気学会・SICE若手セミナー講演 2024年12月) / The principle of victory discovered by science (Lecture for young academists in IEEJ-SICE))
konakalab
0
110
統計学入門講座 第4回スライド
techmathproject
0
150
Explanatory material
yuki1986
0
340
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1031
460k
Raft: Consensus for Rubyists
vanstee
140
7k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Scaling GitHub
holman
460
140k
Optimizing for Happiness
mojombo
379
70k
Six Lessons from altMBA
skipperchong
28
3.9k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Navigating Team Friction
lara
187
15k
Transcript
Path Copying と永続データ構造 会津大学 学部1年 児島大和
自己紹介 • HN: 遠山 (twitter:@toyama_pts) • 絵を描いています • AtCoder: 青(highest)
永続データ構造ってなに? • 変更を加えても以前のデータが保存されている ◦ 破壊的変更を絶対に許さない • どのバージョンに対しても変更を行える • 今回は木構造の永続化について扱います
今回扱う木構造 • 親から子へリンクを持つ有向木
今回扱う木構造 • 親から子へリンクを持つ有向木 ◦ 二分探索木 7 5 8 2 6
1 3 9
今回扱う木構造 • 親から子へリンクを持つ有向木 ◦ セグメント木 (区間和を高速に取れる配列) a1+a2+a3+a4+a5+a6+a7+a8 a1+a2+a3+a4 a5+a6+a7+a8 a1+a2
a3+a4 a5+a6 a7+a8 a1 a2 a3 a4 a5 a6 a7 a8
永続化
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9 7
5 8 2 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9 7
5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? 7 5 8 2 6
9 7 5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? • 時間計算量さん!!? 7 5 8
2 6 9 7 5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? • 時間計算量さん!!? ◦ 二分探索木は O(log
N) でデータ追加できた ◦ しかし O(N) に悪化してしまった!(ヤバい) 7 5 8 2 6 9 7 5 8 1 6 9 全コピー
スマート解法 (Path Copying) • 同じデータをたくさんコピーしていて無駄っぽい
スマート解法 (Path Copying) • コピーする必要のあるノードを考える 5 3 6 2 4
7 5 3 6 2 4 9
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える • 旧6から新9へ辺をつなげば良さそう....?
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える • 旧6から新9へ辺をつなげば良さそう....? 子を辿るときどちらへ行けば分からない
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える • 変更ノードから根までをコピー • 根から一意に探索可能
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える • 変更ノードから根までをコピー • 根から一意に探索可能 うれしい!!!!
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5 親を辿るときどちらへ行けば....?
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5 うれしくない.... • Path Copying で効率的な永続化は難しい
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 0 0 0 0 0 0 ver.2
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 [2] += 2, [5] += 4
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 0 0 2 0 0 4 0 0 ver.3
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 [0] += 1, [2] += 1
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 0 3 0 0 4 0 0 ver.4
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 [1] += 3, [5] += 2
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 y=[1, 4] x=[1, 3]の和
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 y=[1, 2], x=[1, 3]の和
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる • 累積和で区間和を計算するのと同じ要領で矩形和を処理可能 0 0 0
0 0 0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4
まとめ -メリット • コピーが効率的(大抵 O(1)) ◦ 参照じゃないよ! ◦ 差分の小さい構造をたくさん作るとき有利 •
適用範囲が広い • 実現方法が美しい カッコいい 憧れる
まとめ -デメリット • やっぱりメモリは食う • デストラクタの実装が難 ◦ std::shared_ptr を使うと遅い... •
ならし計算量が壊れるかも • 競プロでさえ使うことは少ない
実装例 • 僕の github にあります (C++) ◦ https://toyama1710.github.io/cpp_library
ご清聴あり がとうござ いました!