Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Path Copying による永続データ構造
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
toyama
July 18, 2020
Science
0
670
Path Copying による永続データ構造
toyama
July 18, 2020
Tweet
Share
More Decks by toyama
See All by toyama
全文検索のアルゴリズムとデータ構造
toyama1710
0
310
Other Decks in Science
See All in Science
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
810
学術講演会中央大学学員会府中支部
tagtag
PRO
0
350
Navigating Weather and Climate Data
rabernat
0
110
Lean4による汎化誤差評価の形式化
milano0017
1
430
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
130
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
200
NDCG is NOT All I Need
statditto
2
2.8k
KH Coderチュートリアル(スライド版)
koichih
1
58k
SpatialRDDパッケージによる空間回帰不連続デザイン
saltcooky12
0
160
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
6
21k
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.5k
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
9
760
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
920
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
79
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
740
Abbi's Birthday
coloredviolet
1
4.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
4 Signs Your Business is Dying
shpigford
187
22k
Building Adaptive Systems
keathley
44
2.9k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Are puppies a ranking factor?
jonoalderson
1
2.7k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Transcript
Path Copying と永続データ構造 会津大学 学部1年 児島大和
自己紹介 • HN: 遠山 (twitter:@toyama_pts) • 絵を描いています • AtCoder: 青(highest)
永続データ構造ってなに? • 変更を加えても以前のデータが保存されている ◦ 破壊的変更を絶対に許さない • どのバージョンに対しても変更を行える • 今回は木構造の永続化について扱います
今回扱う木構造 • 親から子へリンクを持つ有向木
今回扱う木構造 • 親から子へリンクを持つ有向木 ◦ 二分探索木 7 5 8 2 6
1 3 9
今回扱う木構造 • 親から子へリンクを持つ有向木 ◦ セグメント木 (区間和を高速に取れる配列) a1+a2+a3+a4+a5+a6+a7+a8 a1+a2+a3+a4 a5+a6+a7+a8 a1+a2
a3+a4 a5+a6 a7+a8 a1 a2 a3 a4 a5 a6 a7 a8
永続化
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9 7
5 8 2 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9 7
5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? 7 5 8 2 6
9 7 5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? • 時間計算量さん!!? 7 5 8
2 6 9 7 5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? • 時間計算量さん!!? ◦ 二分探索木は O(log
N) でデータ追加できた ◦ しかし O(N) に悪化してしまった!(ヤバい) 7 5 8 2 6 9 7 5 8 1 6 9 全コピー
スマート解法 (Path Copying) • 同じデータをたくさんコピーしていて無駄っぽい
スマート解法 (Path Copying) • コピーする必要のあるノードを考える 5 3 6 2 4
7 5 3 6 2 4 9
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える • 旧6から新9へ辺をつなげば良さそう....?
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える • 旧6から新9へ辺をつなげば良さそう....? 子を辿るときどちらへ行けば分からない
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える • 変更ノードから根までをコピー • 根から一意に探索可能
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える • 変更ノードから根までをコピー • 根から一意に探索可能 うれしい!!!!
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5 親を辿るときどちらへ行けば....?
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5 うれしくない.... • Path Copying で効率的な永続化は難しい
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 0 0 0 0 0 0 ver.2
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 [2] += 2, [5] += 4
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 0 0 2 0 0 4 0 0 ver.3
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 [0] += 1, [2] += 1
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 0 3 0 0 4 0 0 ver.4
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 [1] += 3, [5] += 2
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 y=[1, 4] x=[1, 3]の和
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 y=[1, 2], x=[1, 3]の和
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる • 累積和で区間和を計算するのと同じ要領で矩形和を処理可能 0 0 0
0 0 0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4
まとめ -メリット • コピーが効率的(大抵 O(1)) ◦ 参照じゃないよ! ◦ 差分の小さい構造をたくさん作るとき有利 •
適用範囲が広い • 実現方法が美しい カッコいい 憧れる
まとめ -デメリット • やっぱりメモリは食う • デストラクタの実装が難 ◦ std::shared_ptr を使うと遅い... •
ならし計算量が壊れるかも • 競プロでさえ使うことは少ない
実装例 • 僕の github にあります (C++) ◦ https://toyama1710.github.io/cpp_library
ご清聴あり がとうござ いました!