Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Path Copying による永続データ構造
Search
toyama
July 18, 2020
Science
0
570
Path Copying による永続データ構造
toyama
July 18, 2020
Tweet
Share
More Decks by toyama
See All by toyama
全文検索のアルゴリズムとデータ構造
toyama1710
0
280
Other Decks in Science
See All in Science
How To Buy, Verified Venmo Accounts in 2025 This year
usaallshop68
2
110
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
430
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
490
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
910
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
480
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
540
学術講演会中央大学学員会府中支部
tagtag
0
270
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
130
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
170
2025-06-11-ai_belgium
sofievl
1
120
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
850
オンプレミス環境にKubernetesを構築する
koukimiura
0
260
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.1k
Automating Front-end Workflow
addyosmani
1370
200k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
670
Producing Creativity
orderedlist
PRO
346
40k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Rails Girls Zürich Keynote
gr2m
94
14k
GraphQLとの向き合い方2022年版
quramy
48
14k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Git: the NoSQL Database
bkeepers
PRO
430
65k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Transcript
Path Copying と永続データ構造 会津大学 学部1年 児島大和
自己紹介 • HN: 遠山 (twitter:@toyama_pts) • 絵を描いています • AtCoder: 青(highest)
永続データ構造ってなに? • 変更を加えても以前のデータが保存されている ◦ 破壊的変更を絶対に許さない • どのバージョンに対しても変更を行える • 今回は木構造の永続化について扱います
今回扱う木構造 • 親から子へリンクを持つ有向木
今回扱う木構造 • 親から子へリンクを持つ有向木 ◦ 二分探索木 7 5 8 2 6
1 3 9
今回扱う木構造 • 親から子へリンクを持つ有向木 ◦ セグメント木 (区間和を高速に取れる配列) a1+a2+a3+a4+a5+a6+a7+a8 a1+a2+a3+a4 a5+a6+a7+a8 a1+a2
a3+a4 a5+a6 a7+a8 a1 a2 a3 a4 a5 a6 a7 a8
永続化
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9 7
5 8 2 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9 7
5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? 7 5 8 2 6
9 7 5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? • 時間計算量さん!!? 7 5 8
2 6 9 7 5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? • 時間計算量さん!!? ◦ 二分探索木は O(log
N) でデータ追加できた ◦ しかし O(N) に悪化してしまった!(ヤバい) 7 5 8 2 6 9 7 5 8 1 6 9 全コピー
スマート解法 (Path Copying) • 同じデータをたくさんコピーしていて無駄っぽい
スマート解法 (Path Copying) • コピーする必要のあるノードを考える 5 3 6 2 4
7 5 3 6 2 4 9
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える • 旧6から新9へ辺をつなげば良さそう....?
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える • 旧6から新9へ辺をつなげば良さそう....? 子を辿るときどちらへ行けば分からない
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える • 変更ノードから根までをコピー • 根から一意に探索可能
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える • 変更ノードから根までをコピー • 根から一意に探索可能 うれしい!!!!
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5 親を辿るときどちらへ行けば....?
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5 うれしくない.... • Path Copying で効率的な永続化は難しい
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 0 0 0 0 0 0 ver.2
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 [2] += 2, [5] += 4
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 0 0 2 0 0 4 0 0 ver.3
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 [0] += 1, [2] += 1
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 0 3 0 0 4 0 0 ver.4
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 [1] += 3, [5] += 2
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 y=[1, 4] x=[1, 3]の和
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 y=[1, 2], x=[1, 3]の和
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる • 累積和で区間和を計算するのと同じ要領で矩形和を処理可能 0 0 0
0 0 0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4
まとめ -メリット • コピーが効率的(大抵 O(1)) ◦ 参照じゃないよ! ◦ 差分の小さい構造をたくさん作るとき有利 •
適用範囲が広い • 実現方法が美しい カッコいい 憧れる
まとめ -デメリット • やっぱりメモリは食う • デストラクタの実装が難 ◦ std::shared_ptr を使うと遅い... •
ならし計算量が壊れるかも • 競プロでさえ使うことは少ない
実装例 • 僕の github にあります (C++) ◦ https://toyama1710.github.io/cpp_library
ご清聴あり がとうござ いました!