$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Path Copying による永続データ構造
Search
toyama
July 18, 2020
Science
0
630
Path Copying による永続データ構造
toyama
July 18, 2020
Tweet
Share
More Decks by toyama
See All by toyama
全文検索のアルゴリズムとデータ構造
toyama1710
0
300
Other Decks in Science
See All in Science
データマイニング - ノードの中心性
trycycle
PRO
0
320
データマイニング - ウェブとグラフ
trycycle
PRO
0
220
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
170
HDC tutorial
michielstock
0
260
Algorithmic Aspects of Quiver Representations
tasusu
0
130
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
400
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
180
Lean4による汎化誤差評価の形式化
milano0017
1
390
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
640
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
130
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
28
2.4k
It's Worth the Effort
3n
187
29k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Unsuck your backbone
ammeep
671
58k
WENDY [Excerpt]
tessaabrams
8
35k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
240
GitHub's CSS Performance
jonrohan
1032
470k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
The Curious Case for Waylosing
cassininazir
0
190
The Curse of the Amulet
leimatthew05
0
4.6k
Paper Plane (Part 1)
katiecoart
PRO
0
1.9k
Transcript
Path Copying と永続データ構造 会津大学 学部1年 児島大和
自己紹介 • HN: 遠山 (twitter:@toyama_pts) • 絵を描いています • AtCoder: 青(highest)
永続データ構造ってなに? • 変更を加えても以前のデータが保存されている ◦ 破壊的変更を絶対に許さない • どのバージョンに対しても変更を行える • 今回は木構造の永続化について扱います
今回扱う木構造 • 親から子へリンクを持つ有向木
今回扱う木構造 • 親から子へリンクを持つ有向木 ◦ 二分探索木 7 5 8 2 6
1 3 9
今回扱う木構造 • 親から子へリンクを持つ有向木 ◦ セグメント木 (区間和を高速に取れる配列) a1+a2+a3+a4+a5+a6+a7+a8 a1+a2+a3+a4 a5+a6+a7+a8 a1+a2
a3+a4 a5+a6 a7+a8 a1 a2 a3 a4 a5 a6 a7 a8
永続化
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9 7
5 8 2 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9 7
5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? 7 5 8 2 6
9 7 5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? • 時間計算量さん!!? 7 5 8
2 6 9 7 5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? • 時間計算量さん!!? ◦ 二分探索木は O(log
N) でデータ追加できた ◦ しかし O(N) に悪化してしまった!(ヤバい) 7 5 8 2 6 9 7 5 8 1 6 9 全コピー
スマート解法 (Path Copying) • 同じデータをたくさんコピーしていて無駄っぽい
スマート解法 (Path Copying) • コピーする必要のあるノードを考える 5 3 6 2 4
7 5 3 6 2 4 9
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える • 旧6から新9へ辺をつなげば良さそう....?
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える • 旧6から新9へ辺をつなげば良さそう....? 子を辿るときどちらへ行けば分からない
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える • 変更ノードから根までをコピー • 根から一意に探索可能
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える • 変更ノードから根までをコピー • 根から一意に探索可能 うれしい!!!!
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5 親を辿るときどちらへ行けば....?
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5 うれしくない.... • Path Copying で効率的な永続化は難しい
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 0 0 0 0 0 0 ver.2
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 [2] += 2, [5] += 4
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 0 0 2 0 0 4 0 0 ver.3
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 [0] += 1, [2] += 1
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 0 3 0 0 4 0 0 ver.4
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 [1] += 3, [5] += 2
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 y=[1, 4] x=[1, 3]の和
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 y=[1, 2], x=[1, 3]の和
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる • 累積和で区間和を計算するのと同じ要領で矩形和を処理可能 0 0 0
0 0 0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4
まとめ -メリット • コピーが効率的(大抵 O(1)) ◦ 参照じゃないよ! ◦ 差分の小さい構造をたくさん作るとき有利 •
適用範囲が広い • 実現方法が美しい カッコいい 憧れる
まとめ -デメリット • やっぱりメモリは食う • デストラクタの実装が難 ◦ std::shared_ptr を使うと遅い... •
ならし計算量が壊れるかも • 競プロでさえ使うことは少ない
実装例 • 僕の github にあります (C++) ◦ https://toyama1710.github.io/cpp_library
ご清聴あり がとうござ いました!