Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Path Copying による永続データ構造
Search
toyama
July 18, 2020
Science
0
670
Path Copying による永続データ構造
toyama
July 18, 2020
Tweet
Share
More Decks by toyama
See All by toyama
全文検索のアルゴリズムとデータ構造
toyama1710
0
310
Other Decks in Science
See All in Science
HajimetenoLT vol.17
hashimoto_kei
1
170
Celebrate UTIG: Staff and Student Awards 2025
utig
0
790
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1.1k
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
520
NDCG is NOT All I Need
statditto
2
2.8k
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
230
SpatialRDDパッケージによる空間回帰不連続デザイン
saltcooky12
0
160
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
340
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
200
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
420
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
610
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
698
190k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
190
Technical Leadership for Architectural Decision Making
baasie
2
250
The Art of Programming - Codeland 2020
erikaheidi
57
14k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Transcript
Path Copying と永続データ構造 会津大学 学部1年 児島大和
自己紹介 • HN: 遠山 (twitter:@toyama_pts) • 絵を描いています • AtCoder: 青(highest)
永続データ構造ってなに? • 変更を加えても以前のデータが保存されている ◦ 破壊的変更を絶対に許さない • どのバージョンに対しても変更を行える • 今回は木構造の永続化について扱います
今回扱う木構造 • 親から子へリンクを持つ有向木
今回扱う木構造 • 親から子へリンクを持つ有向木 ◦ 二分探索木 7 5 8 2 6
1 3 9
今回扱う木構造 • 親から子へリンクを持つ有向木 ◦ セグメント木 (区間和を高速に取れる配列) a1+a2+a3+a4+a5+a6+a7+a8 a1+a2+a3+a4 a5+a6+a7+a8 a1+a2
a3+a4 a5+a6 a7+a8 a1 a2 a3 a4 a5 a6 a7 a8
永続化
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9 7
5 8 2 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー 7 5 8 2 6 9 7
5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? 7 5 8 2 6
9 7 5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? • 時間計算量さん!!? 7 5 8
2 6 9 7 5 8 1 6 9 全コピー
ナイーブ解法 • 変更前の構造をまるっとコピー • 空間計算量さん!? • 時間計算量さん!!? ◦ 二分探索木は O(log
N) でデータ追加できた ◦ しかし O(N) に悪化してしまった!(ヤバい) 7 5 8 2 6 9 7 5 8 1 6 9 全コピー
スマート解法 (Path Copying) • 同じデータをたくさんコピーしていて無駄っぽい
スマート解法 (Path Copying) • コピーする必要のあるノードを考える 5 3 6 2 4
7 5 3 6 2 4 9
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える • 旧6から新9へ辺をつなげば良さそう....?
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 • コピーする必要のあるノードを考える • 旧6から新9へ辺をつなげば良さそう....? 子を辿るときどちらへ行けば分からない
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える • 変更ノードから根までをコピー • 根から一意に探索可能
スマート解法 (Path Copying) 5 3 6 2 4 7 5
3 6 2 4 7 9 6 5 • コピーする必要のあるノードを考える • 変更ノードから根までをコピー • 根から一意に探索可能 うれしい!!!!
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5 親を辿るときどちらへ行けば....?
子から親へ辺があると... 5 3 6 2 4 7 5 3 6
2 4 7 9 6 5 うれしくない.... • Path Copying で効率的な永続化は難しい
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
使用例 • 永続配列 0 1 2 3 4 5 6
7
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 0 0 0 0 0 0 ver.2
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 [2] += 2, [5] += 4
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 0 0 2 0 0 4 0 0 ver.3
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 [0] += 1, [2] += 1
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 0 3 0 0 4 0 0 ver.4
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 [1] += 3, [5] += 2
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 y=[1, 4] x=[1, 3]の和
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる 0 0 0 0 0
0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4 y=[1, 2], x=[1, 3]の和
永続データ構造使用例 • 矩形和を処理 ◦ 時間軸を縦軸と見立てる • 累積和で区間和を計算するのと同じ要領で矩形和を処理可能 0 0 0
0 0 0 0 0 ver.1 0 0 2 0 0 4 0 0 ver.2 1 0 3 0 0 4 0 0 ver.3 1 3 3 0 0 6 0 0 ver.4
まとめ -メリット • コピーが効率的(大抵 O(1)) ◦ 参照じゃないよ! ◦ 差分の小さい構造をたくさん作るとき有利 •
適用範囲が広い • 実現方法が美しい カッコいい 憧れる
まとめ -デメリット • やっぱりメモリは食う • デストラクタの実装が難 ◦ std::shared_ptr を使うと遅い... •
ならし計算量が壊れるかも • 競プロでさえ使うことは少ない
実装例 • 僕の github にあります (C++) ◦ https://toyama1710.github.io/cpp_library
ご清聴あり がとうござ いました!