Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Intro to ConvNets: The backbone of modern compu...
Search
Tryolabs
April 10, 2019
Technology
0
2.1k
Intro to ConvNets: The backbone of modern computer vision
Tryolabs
April 10, 2019
Tweet
Share
More Decks by Tryolabs
See All by Tryolabs
An Introduction to Machine Learning and How to Teach Machines to See
tryolabs
0
2k
Tryolabs Workshop: Object Detection with Deep Learning
tryolabs
0
420
PyImageConf Workshop: Object Detection with Deep Learning
tryolabs
0
260
Introduction to Object Detection - PyCon APAC 2018
tryolabs
0
2.5k
Building an Object Detection toolkit with TensorFlow (ODSC West 2017)
tryolabs
1
2.3k
Building an Object Detection toolkit with TensorFlow (PyLadies Meetup)
tryolabs
1
410
Building an Object Detection toolkit with TensorFlow (ODSC Europe 2017)
tryolabs
1
210
Tryolabs Working Trip NYC 2017 in pictures.
tryolabs
0
1.6k
Machine Learning 101 - Tryolabs
tryolabs
0
210
Other Decks in Technology
See All in Technology
AIエージェントを現場で使う / 2025.08.07 著者陣に聞く!現場で活用するためのAIエージェント実践入門(Findyランチセッション)
smiyawaki0820
6
570
Perlアプリケーションで トレースを実装するまでの 工夫と苦労話
masayoshi
1
410
Kiroでインフラ要件定義~テスト を実施してみた
nagisa53
3
300
SRE新規立ち上げ! Hubbleインフラのこれまでと展望
katsuya0515
0
160
Claude CodeでKiroの仕様駆動開発を実現させるには...
gotalab555
3
870
AI によるドキュメント処理を加速するためのOCR 結果の永続化と再利用戦略
tomoaki25
0
390
AI コードレビューが面倒すぎるのでテスト駆動開発で解決しようとして読んだら、根本的に俺の勘違いだった
mutsumix
0
160
リリース2ヶ月で収益化した話
kent_code3
1
180
Mambaで物体検出 完全に理解した
shirarei24
2
210
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
25
11k
【CEDEC2025】大規模言語モデルを活用したゲーム内会話パートのスクリプト作成支援への取り組み
cygames
PRO
2
770
【CEDEC2025】『Shadowverse: Worlds Beyond』二度目のDCG開発でゲームをリデザインする~遊びやすさと競技性の両立~
cygames
PRO
1
290
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
223
9.9k
Visualization
eitanlees
146
16k
Designing Experiences People Love
moore
142
24k
Done Done
chrislema
185
16k
Java REST API Framework Comparison - PWX 2021
mraible
32
8.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
870
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
How to Ace a Technical Interview
jacobian
278
23k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.2k
Embracing the Ebb and Flow
colly
86
4.8k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Transcript
The backbone of modern computer vision Intro to ConvNets
2
3 =
4
Convolutional Network
6 ⊙ = Σ input output kernel
7 input output ⊙ = kernel Σ
8 input output = kernel Σ ⊙
9 input output ⊙ = kernel Σ
10 kernel input output
11
12 Optimization Label: Bird ConvNet Loss Function Prediction: Cat
13 Optimization ConvNet Prediction: Bird Loss Function Label: Bird
14 Non-linear function from: wikipedia.org Sigmoid Function
15 Pooling operation from: computersciencewiki.org
16
17 Conv layer Non-linear function Convolution & Non-linear function &
Pooling Pooling Conv layer Non-linear function Pooling Conv layer Non-linear function
18 AlexNet (2012)
Thanks!