Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Intro to ConvNets: The backbone of modern compu...
Search
Tryolabs
April 10, 2019
Technology
0
2.2k
Intro to ConvNets: The backbone of modern computer vision
Tryolabs
April 10, 2019
Tweet
Share
More Decks by Tryolabs
See All by Tryolabs
An Introduction to Machine Learning and How to Teach Machines to See
tryolabs
0
2.1k
Tryolabs Workshop: Object Detection with Deep Learning
tryolabs
0
500
PyImageConf Workshop: Object Detection with Deep Learning
tryolabs
0
280
Introduction to Object Detection - PyCon APAC 2018
tryolabs
0
2.6k
Building an Object Detection toolkit with TensorFlow (ODSC West 2017)
tryolabs
1
2.4k
Building an Object Detection toolkit with TensorFlow (PyLadies Meetup)
tryolabs
1
410
Building an Object Detection toolkit with TensorFlow (ODSC Europe 2017)
tryolabs
1
210
Tryolabs Working Trip NYC 2017 in pictures.
tryolabs
0
1.6k
Machine Learning 101 - Tryolabs
tryolabs
0
210
Other Decks in Technology
See All in Technology
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
340
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
120
Ruby で作る大規模イベントネットワーク構築・運用支援システム TTDB
taketo1113
1
270
MapKitとオープンデータで実現する地図情報の拡張と可視化
zozotech
PRO
1
140
A Compass of Thought: Guiding the Future of Test Automation ( #jassttokai25 , #jassttokai )
teyamagu
PRO
1
260
EM歴1年10ヶ月のぼくがぶち当たった苦悩とこれからへ向けて
maaaato
0
270
技術以外の世界に『越境』しエンジニアとして進化を遂げる 〜Kotlinへの愛とDevHRとしての挑戦を添えて〜
subroh0508
1
430
学習データって増やせばいいんですか?
ftakahashi
2
320
Playwright x GitHub Actionsで実現する「レビューしやすい」E2Eテストレポート
kinosuke01
0
580
OCI Oracle Database Services新機能アップデート(2025/09-2025/11)
oracle4engineer
PRO
1
130
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
130
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
1
120
Featured
See All Featured
KATA
mclloyd
PRO
32
15k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Producing Creativity
orderedlist
PRO
348
40k
Bash Introduction
62gerente
615
210k
GraphQLとの向き合い方2022年版
quramy
50
14k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Visualization
eitanlees
150
16k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
Unsuck your backbone
ammeep
671
58k
Transcript
The backbone of modern computer vision Intro to ConvNets
2
3 =
4
Convolutional Network
6 ⊙ = Σ input output kernel
7 input output ⊙ = kernel Σ
8 input output = kernel Σ ⊙
9 input output ⊙ = kernel Σ
10 kernel input output
11
12 Optimization Label: Bird ConvNet Loss Function Prediction: Cat
13 Optimization ConvNet Prediction: Bird Loss Function Label: Bird
14 Non-linear function from: wikipedia.org Sigmoid Function
15 Pooling operation from: computersciencewiki.org
16
17 Conv layer Non-linear function Convolution & Non-linear function &
Pooling Pooling Conv layer Non-linear function Pooling Conv layer Non-linear function
18 AlexNet (2012)
Thanks!