Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Intro to ConvNets: The backbone of modern compu...
Search
Tryolabs
April 10, 2019
Technology
0
2.1k
Intro to ConvNets: The backbone of modern computer vision
Tryolabs
April 10, 2019
Tweet
Share
More Decks by Tryolabs
See All by Tryolabs
An Introduction to Machine Learning and How to Teach Machines to See
tryolabs
0
2k
Tryolabs Workshop: Object Detection with Deep Learning
tryolabs
0
400
PyImageConf Workshop: Object Detection with Deep Learning
tryolabs
0
260
Introduction to Object Detection - PyCon APAC 2018
tryolabs
0
2.4k
Building an Object Detection toolkit with TensorFlow (ODSC West 2017)
tryolabs
1
2.3k
Building an Object Detection toolkit with TensorFlow (PyLadies Meetup)
tryolabs
1
400
Building an Object Detection toolkit with TensorFlow (ODSC Europe 2017)
tryolabs
1
210
Tryolabs Working Trip NYC 2017 in pictures.
tryolabs
0
1.5k
Machine Learning 101 - Tryolabs
tryolabs
0
200
Other Decks in Technology
See All in Technology
試作とデモンストレーション / Prototyping and Demonstrations
ks91
PRO
0
150
技術選定を突き詰める 懇親会LT
okaru
2
1.3k
水耕栽培に全部賭けろ
mutsumix
0
160
TanStack Start 技術選定の裏側 / Findy-Lunch-LT-TanStack-Start
iktakahiro
1
170
Ruby on Rails の楽しみ方
morihirok
6
3.1k
【Gen-AX】20250514開催_Findyオンラインイベント_技術選定を突き詰める
genax
0
100
Next.jsと状態管理のプラクティス
uhyo
6
2.4k
Previewでもここまで追える! Azure AI Foundryで始めるLLMトレース
tomodo_ysys
2
760
4月15日の AZ 障害をテクサポの中の人目線で振り返ってみる
kazzpapa3
3
180
Sleep-time Compute: LLM推論コスト削減のための事前推論
sergicalsix
1
150
Kaigi Effect 2025 #rubykaigi2025_after
sue445
0
210
ITベンダーから見る内製化支援の本質/in-house-dev
slsops
1
170
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Writing Fast Ruby
sferik
628
61k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.7k
Building a Modern Day E-commerce SEO Strategy
aleyda
40
7.3k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
Fireside Chat
paigeccino
37
3.4k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.2k
The World Runs on Bad Software
bkeepers
PRO
68
11k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
41
2.3k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.4k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Transcript
The backbone of modern computer vision Intro to ConvNets
2
3 =
4
Convolutional Network
6 ⊙ = Σ input output kernel
7 input output ⊙ = kernel Σ
8 input output = kernel Σ ⊙
9 input output ⊙ = kernel Σ
10 kernel input output
11
12 Optimization Label: Bird ConvNet Loss Function Prediction: Cat
13 Optimization ConvNet Prediction: Bird Loss Function Label: Bird
14 Non-linear function from: wikipedia.org Sigmoid Function
15 Pooling operation from: computersciencewiki.org
16
17 Conv layer Non-linear function Convolution & Non-linear function &
Pooling Pooling Conv layer Non-linear function Pooling Conv layer Non-linear function
18 AlexNet (2012)
Thanks!