Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Intro to ConvNets: The backbone of modern compu...
Search
Tryolabs
April 10, 2019
Technology
0
2.1k
Intro to ConvNets: The backbone of modern computer vision
Tryolabs
April 10, 2019
Tweet
Share
More Decks by Tryolabs
See All by Tryolabs
An Introduction to Machine Learning and How to Teach Machines to See
tryolabs
0
2.1k
Tryolabs Workshop: Object Detection with Deep Learning
tryolabs
0
430
PyImageConf Workshop: Object Detection with Deep Learning
tryolabs
0
270
Introduction to Object Detection - PyCon APAC 2018
tryolabs
0
2.5k
Building an Object Detection toolkit with TensorFlow (ODSC West 2017)
tryolabs
1
2.4k
Building an Object Detection toolkit with TensorFlow (PyLadies Meetup)
tryolabs
1
410
Building an Object Detection toolkit with TensorFlow (ODSC Europe 2017)
tryolabs
1
210
Tryolabs Working Trip NYC 2017 in pictures.
tryolabs
0
1.6k
Machine Learning 101 - Tryolabs
tryolabs
0
210
Other Decks in Technology
See All in Technology
LLM APIを2年間本番運用して苦労した話
ivry_presentationmaterials
9
5.6k
AI連携の新常識! 話題のMCPをはじめて学ぶ!
makoakiba
0
180
今のコンピュータ、AI にも Web にも 向いていないので 作り直そう!!
piacerex
0
550
어떤 개발자가 되고 싶은가?
arawn
1
420
DMARCは導入したんだけど・・・現場のつぶやき 〜 BIMI?何それ美味しいの?
hirachan
1
140
abema-trace-sampling-observability-cost-optimization
tetsuya28
0
460
Raycast AI APIを使ってちょっと便利なAI拡張機能を作ってみた
kawamataryo
1
240
30分でわかる!!『OCI で学ぶクラウドネイティブ実践 X 理論ガイド』
oracle4engineer
PRO
1
110
Digitization部 紹介資料
sansan33
PRO
1
5.8k
マルチエージェントのチームビルディング_2025-10-25
shinoyamada
0
250
アノテーション作業書作成のGood Practice
cierpa0905
PRO
1
390
Boxを“使われる場”にする統制と自動化の仕組み
demaecan
0
180
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
Leading Effective Engineering Teams in the AI Era
addyosmani
7
700
Why Our Code Smells
bkeepers
PRO
340
57k
BBQ
matthewcrist
89
9.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Facilitating Awesome Meetings
lara
57
6.6k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
How GitHub (no longer) Works
holman
315
140k
What's in a price? How to price your products and services
michaelherold
246
12k
Visualization
eitanlees
150
16k
Transcript
The backbone of modern computer vision Intro to ConvNets
2
3 =
4
Convolutional Network
6 ⊙ = Σ input output kernel
7 input output ⊙ = kernel Σ
8 input output = kernel Σ ⊙
9 input output ⊙ = kernel Σ
10 kernel input output
11
12 Optimization Label: Bird ConvNet Loss Function Prediction: Cat
13 Optimization ConvNet Prediction: Bird Loss Function Label: Bird
14 Non-linear function from: wikipedia.org Sigmoid Function
15 Pooling operation from: computersciencewiki.org
16
17 Conv layer Non-linear function Convolution & Non-linear function &
Pooling Pooling Conv layer Non-linear function Pooling Conv layer Non-linear function
18 AlexNet (2012)
Thanks!