Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Intro to ConvNets: The backbone of modern compu...
Search
Tryolabs
April 10, 2019
Technology
0
1.9k
Intro to ConvNets: The backbone of modern computer vision
Tryolabs
April 10, 2019
Tweet
Share
More Decks by Tryolabs
See All by Tryolabs
An Introduction to Machine Learning and How to Teach Machines to See
tryolabs
0
1.8k
Tryolabs Workshop: Object Detection with Deep Learning
tryolabs
0
380
PyImageConf Workshop: Object Detection with Deep Learning
tryolabs
0
250
Introduction to Object Detection - PyCon APAC 2018
tryolabs
0
2.3k
Building an Object Detection toolkit with TensorFlow (ODSC West 2017)
tryolabs
1
2.1k
Building an Object Detection toolkit with TensorFlow (PyLadies Meetup)
tryolabs
1
400
Building an Object Detection toolkit with TensorFlow (ODSC Europe 2017)
tryolabs
1
210
Tryolabs Working Trip NYC 2017 in pictures.
tryolabs
0
1.4k
Machine Learning 101 - Tryolabs
tryolabs
0
200
Other Decks in Technology
See All in Technology
Developers Summit 2025 浅野卓也(13-B-7 LegalOn Technologies)
legalontechnologies
PRO
0
720
急成長する企業で作った、エンジニアが輝ける制度/ 20250214 Rinto Ikenoue
shift_evolve
3
1.3k
次世代KYC活動報告 / 20250219-BizDay17-KYC-nextgen
oidfj
0
260
一度 Expo の採用を断念したけど、 再度 Expo の導入を検討している話
ichiki1023
1
170
君も受託系GISエンジニアにならないか
sudataka
2
430
OpenID BizDay#17 KYC WG活動報告(法人) / 20250219-BizDay17-KYC-legalidentity
oidfj
0
250
データマネジメントのトレードオフに立ち向かう
ikkimiyazaki
6
980
バックエンドエンジニアのためのフロントエンド入門 #devsumiC
panda_program
18
7.5k
Data-centric AI入門第6章:Data-centric AIの実践例
x_ttyszk
1
410
モノレポ開発のエラー、誰が見る?Datadog で実現する適切なトリアージとエスカレーション
biwashi
6
810
RECRUIT TECH CONFERENCE 2025 プレイベント【高橋】
recruitengineers
PRO
0
160
JEDAI Meetup! Databricks AI/BI概要
databricksjapan
0
100
Featured
See All Featured
Bash Introduction
62gerente
611
210k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Producing Creativity
orderedlist
PRO
344
39k
Unsuck your backbone
ammeep
669
57k
How GitHub (no longer) Works
holman
314
140k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
For a Future-Friendly Web
brad_frost
176
9.5k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Transcript
The backbone of modern computer vision Intro to ConvNets
2
3 =
4
Convolutional Network
6 ⊙ = Σ input output kernel
7 input output ⊙ = kernel Σ
8 input output = kernel Σ ⊙
9 input output ⊙ = kernel Σ
10 kernel input output
11
12 Optimization Label: Bird ConvNet Loss Function Prediction: Cat
13 Optimization ConvNet Prediction: Bird Loss Function Label: Bird
14 Non-linear function from: wikipedia.org Sigmoid Function
15 Pooling operation from: computersciencewiki.org
16
17 Conv layer Non-linear function Convolution & Non-linear function &
Pooling Pooling Conv layer Non-linear function Pooling Conv layer Non-linear function
18 AlexNet (2012)
Thanks!