Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Intro to ConvNets: The backbone of modern compu...
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Tryolabs
April 10, 2019
Technology
0
2.2k
Intro to ConvNets: The backbone of modern computer vision
Tryolabs
April 10, 2019
Tweet
Share
More Decks by Tryolabs
See All by Tryolabs
An Introduction to Machine Learning and How to Teach Machines to See
tryolabs
0
2.2k
Tryolabs Workshop: Object Detection with Deep Learning
tryolabs
0
500
PyImageConf Workshop: Object Detection with Deep Learning
tryolabs
0
280
Introduction to Object Detection - PyCon APAC 2018
tryolabs
0
2.6k
Building an Object Detection toolkit with TensorFlow (ODSC West 2017)
tryolabs
1
2.4k
Building an Object Detection toolkit with TensorFlow (PyLadies Meetup)
tryolabs
1
410
Building an Object Detection toolkit with TensorFlow (ODSC Europe 2017)
tryolabs
1
210
Tryolabs Working Trip NYC 2017 in pictures.
tryolabs
0
1.6k
Machine Learning 101 - Tryolabs
tryolabs
0
210
Other Decks in Technology
See All in Technology
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
200
生成AI時代にこそ求められるSRE / SRE for Gen AI era
ymotongpoo
5
2.2k
2026年はチャンキングを極める!
shibuiwilliam
8
1.9k
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
2
910
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
1.7k
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
開発メンバーが語るFindy Conferenceの裏側とこれから
sontixyou
2
520
KubeCon + CloudNativeCon NA ‘25 Recap, Extensibility: Gateway API / NRI
ladicle
0
170
Digitization部 紹介資料
sansan33
PRO
1
6.8k
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
520
Tebiki Engineering Team Deck
tebiki
0
23k
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
0
630
Featured
See All Featured
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
89
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
410
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
920
Test your architecture with Archunit
thirion
1
2.1k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
440
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Agile that works and the tools we love
rasmusluckow
331
21k
The Spectacular Lies of Maps
axbom
PRO
1
510
Transcript
The backbone of modern computer vision Intro to ConvNets
2
3 =
4
Convolutional Network
6 ⊙ = Σ input output kernel
7 input output ⊙ = kernel Σ
8 input output = kernel Σ ⊙
9 input output ⊙ = kernel Σ
10 kernel input output
11
12 Optimization Label: Bird ConvNet Loss Function Prediction: Cat
13 Optimization ConvNet Prediction: Bird Loss Function Label: Bird
14 Non-linear function from: wikipedia.org Sigmoid Function
15 Pooling operation from: computersciencewiki.org
16
17 Conv layer Non-linear function Convolution & Non-linear function &
Pooling Pooling Conv layer Non-linear function Pooling Conv layer Non-linear function
18 AlexNet (2012)
Thanks!