Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Intro to ConvNets: The backbone of modern compu...
Search
Tryolabs
April 10, 2019
Technology
0
2.1k
Intro to ConvNets: The backbone of modern computer vision
Tryolabs
April 10, 2019
Tweet
Share
More Decks by Tryolabs
See All by Tryolabs
An Introduction to Machine Learning and How to Teach Machines to See
tryolabs
0
2k
Tryolabs Workshop: Object Detection with Deep Learning
tryolabs
0
420
PyImageConf Workshop: Object Detection with Deep Learning
tryolabs
0
270
Introduction to Object Detection - PyCon APAC 2018
tryolabs
0
2.5k
Building an Object Detection toolkit with TensorFlow (ODSC West 2017)
tryolabs
1
2.3k
Building an Object Detection toolkit with TensorFlow (PyLadies Meetup)
tryolabs
1
410
Building an Object Detection toolkit with TensorFlow (ODSC Europe 2017)
tryolabs
1
210
Tryolabs Working Trip NYC 2017 in pictures.
tryolabs
0
1.6k
Machine Learning 101 - Tryolabs
tryolabs
0
210
Other Decks in Technology
See All in Technology
「どこから読む?」コードとカルチャーに最速で馴染むための実践ガイド
zozotech
PRO
0
320
生成AI時代のデータ基盤設計〜ペースレイヤリングで実現する高速開発と持続性〜 / Levtech Meetup_Session_2
sansan_randd
1
150
MCPで変わる Amebaデザインシステム「Spindle」の開発
spindle
PRO
3
3.2k
Android Audio: Beyond Winning On It
atsushieno
0
110
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
240
生成AIでセキュリティ運用を効率化する話
sakaitakeshi
0
660
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
920
LLMを搭載したプロダクトの品質保証の模索と学び
qa
0
1k
企業の生成AIガバナンスにおけるエージェントとセキュリティ
lycorptech_jp
PRO
2
160
複数サービスを支えるマルチテナント型Batch MLプラットフォーム
lycorptech_jp
PRO
0
330
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
110
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
10k
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
GraphQLとの向き合い方2022年版
quramy
49
14k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Designing for Performance
lara
610
69k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Visualization
eitanlees
148
16k
Writing Fast Ruby
sferik
628
62k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Transcript
The backbone of modern computer vision Intro to ConvNets
2
3 =
4
Convolutional Network
6 ⊙ = Σ input output kernel
7 input output ⊙ = kernel Σ
8 input output = kernel Σ ⊙
9 input output ⊙ = kernel Σ
10 kernel input output
11
12 Optimization Label: Bird ConvNet Loss Function Prediction: Cat
13 Optimization ConvNet Prediction: Bird Loss Function Label: Bird
14 Non-linear function from: wikipedia.org Sigmoid Function
15 Pooling operation from: computersciencewiki.org
16
17 Conv layer Non-linear function Convolution & Non-linear function &
Pooling Pooling Conv layer Non-linear function Pooling Conv layer Non-linear function
18 AlexNet (2012)
Thanks!