Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Intro to ConvNets: The backbone of modern compu...
Search
Tryolabs
April 10, 2019
Technology
0
2.1k
Intro to ConvNets: The backbone of modern computer vision
Tryolabs
April 10, 2019
Tweet
Share
More Decks by Tryolabs
See All by Tryolabs
An Introduction to Machine Learning and How to Teach Machines to See
tryolabs
0
2.1k
Tryolabs Workshop: Object Detection with Deep Learning
tryolabs
0
420
PyImageConf Workshop: Object Detection with Deep Learning
tryolabs
0
270
Introduction to Object Detection - PyCon APAC 2018
tryolabs
0
2.5k
Building an Object Detection toolkit with TensorFlow (ODSC West 2017)
tryolabs
1
2.3k
Building an Object Detection toolkit with TensorFlow (PyLadies Meetup)
tryolabs
1
410
Building an Object Detection toolkit with TensorFlow (ODSC Europe 2017)
tryolabs
1
210
Tryolabs Working Trip NYC 2017 in pictures.
tryolabs
0
1.6k
Machine Learning 101 - Tryolabs
tryolabs
0
210
Other Decks in Technology
See All in Technology
自作LLM Native GORM Pluginで実現する AI Agentバックテスト基盤構築
po3rin
2
240
What is BigQuery?
aizack_harks
0
130
DataOpsNight#8_Terragruntを用いたスケーラブルなSnowflakeインフラ管理
roki18d
1
330
OCI Network Firewall 概要
oracle4engineer
PRO
1
7.8k
Sidekiq その前に:Webアプリケーションにおける非同期ジョブ設計原則
morihirok
17
7.2k
PLaMo2シリーズのvLLM実装 / PFN LLM セミナー
pfn
PRO
2
960
10年の共創が示す、これからの開発者と企業の関係 ~ Crossroad
soracom
PRO
1
160
Modern_Data_Stack最新動向クイズ_買収_AI_激動の2025年_.pdf
sagara
0
190
Pure Goで体験するWasmの未来
askua
1
170
定期的な価値提供だけじゃない、スクラムが導くチームの共創化 / 20251004 Naoki Takahashi
shift_evolve
PRO
3
290
OpenAI gpt-oss ファインチューニング入門
kmotohas
2
920
SREとソフトウェア開発者の合同チームはどのようにS3のコストを削減したか?
muziyoshiz
1
100
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Typedesign – Prime Four
hannesfritz
42
2.8k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Raft: Consensus for Rubyists
vanstee
139
7.1k
Speed Design
sergeychernyshev
32
1.1k
Transcript
The backbone of modern computer vision Intro to ConvNets
2
3 =
4
Convolutional Network
6 ⊙ = Σ input output kernel
7 input output ⊙ = kernel Σ
8 input output = kernel Σ ⊙
9 input output ⊙ = kernel Σ
10 kernel input output
11
12 Optimization Label: Bird ConvNet Loss Function Prediction: Cat
13 Optimization ConvNet Prediction: Bird Loss Function Label: Bird
14 Non-linear function from: wikipedia.org Sigmoid Function
15 Pooling operation from: computersciencewiki.org
16
17 Conv layer Non-linear function Convolution & Non-linear function &
Pooling Pooling Conv layer Non-linear function Pooling Conv layer Non-linear function
18 AlexNet (2012)
Thanks!