Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Intro to ConvNets: The backbone of modern compu...
Search
Tryolabs
April 10, 2019
Technology
0
2.1k
Intro to ConvNets: The backbone of modern computer vision
Tryolabs
April 10, 2019
Tweet
Share
More Decks by Tryolabs
See All by Tryolabs
An Introduction to Machine Learning and How to Teach Machines to See
tryolabs
0
2k
Tryolabs Workshop: Object Detection with Deep Learning
tryolabs
0
410
PyImageConf Workshop: Object Detection with Deep Learning
tryolabs
0
260
Introduction to Object Detection - PyCon APAC 2018
tryolabs
0
2.5k
Building an Object Detection toolkit with TensorFlow (ODSC West 2017)
tryolabs
1
2.3k
Building an Object Detection toolkit with TensorFlow (PyLadies Meetup)
tryolabs
1
410
Building an Object Detection toolkit with TensorFlow (ODSC Europe 2017)
tryolabs
1
210
Tryolabs Working Trip NYC 2017 in pictures.
tryolabs
0
1.5k
Machine Learning 101 - Tryolabs
tryolabs
0
200
Other Decks in Technology
See All in Technology
プロダクトエンジニアリング組織への歩み、その現在地 / Our journey to becoming a product engineering organization
hiro_torii
0
140
ハッカソン by 生成AIハッカソンvol.05
1ftseabass
PRO
0
150
論文紹介:LLMDet (CVPR2025 Highlight)
tattaka
0
240
「良さそう」と「とても良い」の間には 「良さそうだがホンマか」がたくさんある / 2025.07.01 LLM品質Night
smiyawaki0820
1
440
LangSmith×Webhook連携で実現するプロンプトドリブンCI/CD
sergicalsix
1
160
改めてAWS WAFを振り返る~業務で使うためのポイント~
masakiokuda
1
100
GeminiとNotebookLMによる金融実務の業務革新
abenben
0
250
Lazy application authentication with Tailscale
bluehatbrit
0
120
作曲家がボカロを使うようにPdMはAIを使え
itotaxi
0
390
タイミーのデータモデリング事例と今後のチャレンジ
ttccddtoki
4
1.7k
AWS テクニカルサポートとエンドカスタマーの中間地点から見えるより良いサポートの活用方法
kazzpapa3
2
610
AI専用のリンターを作る #yumemi_patch
bengo4com
4
2.2k
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Producing Creativity
orderedlist
PRO
346
40k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
VelocityConf: Rendering Performance Case Studies
addyosmani
331
24k
Music & Morning Musume
bryan
46
6.6k
Writing Fast Ruby
sferik
628
62k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Bash Introduction
62gerente
614
210k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
940
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
Transcript
The backbone of modern computer vision Intro to ConvNets
2
3 =
4
Convolutional Network
6 ⊙ = Σ input output kernel
7 input output ⊙ = kernel Σ
8 input output = kernel Σ ⊙
9 input output ⊙ = kernel Σ
10 kernel input output
11
12 Optimization Label: Bird ConvNet Loss Function Prediction: Cat
13 Optimization ConvNet Prediction: Bird Loss Function Label: Bird
14 Non-linear function from: wikipedia.org Sigmoid Function
15 Pooling operation from: computersciencewiki.org
16
17 Conv layer Non-linear function Convolution & Non-linear function &
Pooling Pooling Conv layer Non-linear function Pooling Conv layer Non-linear function
18 AlexNet (2012)
Thanks!