Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習でサーバの負荷状態を把握したい
Search
tsurubee
March 22, 2019
Technology
7
2.1k
機械学習でサーバの負荷状態を把握したい
tsurubee
March 22, 2019
Tweet
Share
More Decks by tsurubee
See All by tsurubee
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
290
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
490
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
2.9k
DeepCrysTet: A Deep Learning Approach Using Tetrahedral Mesh for Predicting Properties of Crystalline Materials
tsurubee
0
1.1k
3次元メッシュで表現した結晶構造を用いた材料物性の予測に向けた深層学習モデルの設計 / Design of Deep Learning Model for Predicting Material Properties Using Crystal Structure Represented by Three-Dimensional Mesh
tsurubee
1
2.4k
分散システムの性能異常に対する機械学習の解釈性に基づく原因診断手法 / A Method for Diagnosing the Causes of Performance Issues in Distributed Systems Based on the Interpretability of Machine Learning
tsurubee
0
1.5k
機械学習の解釈性に関する研究動向とシステム運用への応用 / A Survey on Interpretable Machine Learning and Its Application for System Operation
tsurubee
0
360
機械学習モデルの局所的な解釈に着目したシステムにおける異常の原因診断手法の構想
tsurubee
0
7.9k
アニーリングマシンを活用したエッジAIにおける 生成モデルの学習効率化のためのアーキテクチャ
tsurubee
0
1.6k
Other Decks in Technology
See All in Technology
Post-AIコーディング時代のエンジニア生存戦略
shinoyu
0
300
Redux → Recoil → Zustand → useSyncExternalStore: 状態管理の10年とReact本来の姿
zozotech
PRO
21
8.9k
クレジットカードの不正を防止する技術
yutadayo
17
7.9k
[CV勉強会@関東 ICCV2025 読み会] World4Drive: End-to-End Autonomous Driving via Intention-aware Physical Latent World Model (Zheng+, ICCV 2025)
abemii
0
240
ある編集者のこれまでとこれから —— 開発者コミュニティと歩んだ四半世紀
inao
5
3.5k
膨大なデータをどうさばく? Java × MQで作るPub/Subアーキテクチャ
zenta
0
120
Javaコミュニティの歩き方 ~参加から貢献まで、すべて教えます~
tabatad
0
140
AIエージェントによるエンタープライズ向けスライド検索!
shibuiwilliam
4
630
Greenは本当にGreenか? - B/GデプロイとAPI自動テストで安心デプロイ
kaz29
0
110
re:Invent2025 事前勉強会 歴史と愉しみ方10分LT編
toshi_atsumi
0
220
AI エージェントを評価するための温故知新と Spec Driven Evaluation
icoxfog417
PRO
2
530
TypeScript 6.0で非推奨化されるオプションたち
uhyo
12
3k
Featured
See All Featured
Become a Pro
speakerdeck
PRO
29
5.6k
Bash Introduction
62gerente
615
210k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
Building an army of robots
kneath
306
46k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
A designer walks into a library…
pauljervisheath
210
24k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Designing for Performance
lara
610
69k
Git: the NoSQL Database
bkeepers
PRO
432
66k
KATA
mclloyd
PRO
32
15k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
192
56k
Transcript
!UTVSVCFF(.01FQBCP *OD )PTUJOH$BTVBM5BMLT ػցֶशͰαʔόͷ ෛՙঢ়ଶΛѲ͍ͨ͠
ࣗݾհ (.0ϖύϘגࣜձࣾ ϗεςΟϯάࣄۀ෦ ΠϯϑϥνʔϜ !UTVSVCFF
None
ࠓ͢͜ͱ wʮΠϯϑϥºσʔλαΠΤϯεʯʹ͍ͭͯ͜Μͳ͜ͱ Ͱ͖Δͱ໘നͦ͏ͩͳʔͱࢲ͕ߟ͍͑ͯΔ͜ͱ wࠓճαʔόࢹʹযΛͯͯ͠·͢
wΠϯϑϥͷݱʹʑେྔͷσʔλ͕ྲྀΕ͍ͯΔ wσʔλΛߴղ૾ͰऔಘɾੵͰ͖Δڥ͕͖͍ͬͯͯΔ ʢ1SPNFUIFVTɺ,BGLBͳͲʣ wσʔλੵ͢Δ͚ͩͰͳ͘׆༻͍ͨ͠ wੵͨ͠େྔͷσʔλʹػցֶशΛద༻Ͱ͖Εɺ৽ͨͳ ࣝൃݟʹܨ͕ΓՁΛͰ͖ΔͷͰͳ͍͔ എܠɿҰൠ
wϗεςΟϯάαʔόҟৗ͕ൃੜ͍͢͠ˍ੍ޚͮ͠Β͍ wߴूੵͷڞ༻αʔό wαʔό্Ͱಈ࡞͢ΔίϯςϯπΛཧͰ͖ͳ͍ wϢʔβαʔόΛબͳ͍ͨΊɺՄೳͳݶΓฏʹշదͳ αʔόڥΛఏڙ͍ͨ͠ എܠɿϨϯλϧαʔόʢ-PMJQPQ)FUFNMʣ
wϗεςΟϯάαʔόҟৗ͕ൃੜ͍͢͠ˍ੍ޚͮ͠Β͍ wߴूੵͷڞ༻αʔό wαʔό্Ͱಈ࡞͢ΔίϯςϯπΛཧͰ͖ͳ͍ wϢʔβαʔόΛબͳ͍ͨΊɺՄೳͳݶΓฏʹշదͳ αʔόڥΛఏڙ͍ͨ͠ എܠɿϨϯλϧαʔόʢ-PMJQPQ)FUFNMʣ αʔόͷঢ়ଶΛਫ਼៛ʹѲ੍ͯ͠ޚ͍ͨ͠
wϗεςΟϯάαʔόҟৗ͕ൃੜ͍͢͠ˍ੍ޚͮ͠Β͍ wߴूੵͷڞ༻αʔό wαʔό্Ͱಈ࡞͢ΔίϯςϯπΛཧͰ͖ͳ͍ wϢʔβαʔόΛબͳ͍ͨΊɺՄೳͳݶΓฏʹշదͳ αʔόڥΛఏڙ͍ͨ͠ എܠɿϨϯλϧαʔόʢ-PMJQPQ)FUFNMʣ αʔόͷঢ়ଶΛਫ਼៛ʹѲ੍ͯ͠ޚ͍ͨ͠ ػցֶशʹΑΔ Ξϓϩʔν͕༗ޮ
wαʔόͷϦιʔε༻ঢ়گϩάͳͲͷࢹରͷϝτϦ Ϋε͝ͱʹᮢΛઃఆ͠ɺͦͷᮢΛ্ճΔ߹ʹΞϥʔτ Λൃใ͢Δʮᮢϕʔεͷࢹʯ͕Ұൠత αʔόࢹͷݱঢ় $16༻ ࣌ؒ ᮢ ΞϥʔτΛൃใ
ݱঢ়ΛѲ্ͨ͠Ͱ ඞͣߟ͑ͳ͚ΕͳΒͳ͍ ͜ͱ͕͋Δ
ຊʹػցֶश͕ඞཁͳͷ͔ ʮ.BDIJOF-FBSOJOH5IF)JHI*OUFSFTU$SFEJU$BSEPG 5FDIOJDBM%FCUʯ %4DVMMFZFUBM (PPHMF wػցֶशΛγεςϜʹΈࠐΉͷେ͖ͳٕज़తෛ࠴Λ ๊͑ࠐΉϦεΫ͕͋Δ͜ͱΛೝࣝ͢Δ wจதͰ༷ʑͳϦεΫཁҼʹ͍ͭͯઆ໌͞Ε͍ͯΔ
ຊʹػցֶश͕ඞཁͳͷ͔ ʮ.BDIJOF-FBSOJOH5IF)JHI*OUFSFTU$SFEJU$BSEPG 5FDIOJDBM%FCUʯ %4DVMMFZFUBM (PPHMF wػցֶशΛγεςϜʹΈࠐΉͷେ͖ͳٕज़తෛ࠴Λ ๊͑ࠐΉϦεΫ͕͋Δ͜ͱΛೝࣝ͢Δ wจதͰ༷ʑͳϦεΫཁҼʹ͍ͭͯઆ໌͞Ε͍ͯΔ ػցֶशΛʮ͏ʯ͜ͱ͕తʹͳͬͯͳΒͳ͍
Θͳͯ͘ࡁΉͳΒΘͳ͍͕࠷ྑͷબ
ᮢϕʔεͷࢹͷݶք ࢹͷਫ਼Λ্͛ΔͨΊʹ໌ࣔతʹࣄલࣝΛೖΕͯ ϧʔϧΛ૿͍͔ͯ͘͠͠ͳ͍ ྫ͑ɺ ̍ฏͷ"͔࣌Β#࣌ͷؒͰɺ͔ͭαʔόΛϦϦʔεͯ͠ ͔Β$ϲ݄ະຬͷ$16༻͕%Λ͑ͨͱ͖ҟৗ ̎$16༻͕&ҎͰ͋Δͱ͖ʹϝϞϦ༻͕' Ҏ্ʹͳͬͨͱ͖ҟৗ
ᮢϕʔεͷࢹͷݶք ࢹͷਫ਼Λ্͛ΔͨΊʹ໌ࣔతʹࣄલࣝΛೖΕͯ ϧʔϧΛ૿͍͔ͯ͘͠͠ͳ͍ ྫ͑ɺ ̍ฏͷ"͔࣌Β#࣌ͷؒͰɺ͔ͭαʔόΛϦϦʔεͯ͠ ͔Β$ϲ݄ະຬͷ$16༻͕%Λ͑ͨͱ͖ҟৗ ̎$16༻͕&ҎͰ͋Δͱ͖ʹϝϞϦ༻͕' Ҏ্ʹͳͬͨͱ͖ҟৗ ਓ͕ؒ໌ࣔతʹࢦఆɾཧͰ͖Δϧʔϧͷʹݶք͕͋Δ JGจࠈʹ͍͍ؕͬͯ͘ɾɾ
ᮢϕʔεͷࢹͷݶք ࢹͷਫ਼Λ্͛ΔͨΊʹ໌ࣔతʹࣄલࣝΛೖΕͯ ϧʔϧΛ૿͍͔ͯ͘͠͠ͳ͍ ྫ͑ɺ ̍ฏͷ"͔࣌Β#࣌ͷؒͰɺ͔ͭαʔόΛϦϦʔεͯ͠ ͔Β$ϲ݄ະຬͷ$16༻͕%Λ͑ͨͱ͖ҟৗ ̎$16༻͕&ҎͰ͋Δͱ͖ʹϝϞϦ༻͕' Ҏ্ʹͳͬͨͱ͖ҟৗ ਓ͕ؒ໌ࣔతʹࢦఆɾཧͰ͖Δϧʔϧͷʹݶք͕͋Δ JGจࠈʹ͍͍ؕͬͯ͘ɾɾ
࣌ܥྻੑ
ᮢϕʔεͷࢹͷݶք ࢹͷਫ਼Λ্͛ΔͨΊʹ໌ࣔతʹࣄલࣝΛೖΕͯ ϧʔϧΛ૿͍͔ͯ͘͠͠ͳ͍ ྫ͑ɺ ̍ฏͷ"͔࣌Β#࣌ͷؒͰɺ͔ͭαʔόΛϦϦʔεͯ͠ ͔Β$ϲ݄ະຬͷ$16༻͕%Λ͑ͨͱ͖ҟৗ ̎$16༻͕&ҎͰ͋Δͱ͖ʹϝϞϦ༻͕' Ҏ্ʹͳͬͨͱ͖ҟৗ ਓ͕ؒ໌ࣔతʹࢦఆɾཧͰ͖Δϧʔϧͷʹݶք͕͋Δ JGจࠈʹ͍͍ؕͬͯ͘ɾɾ
࣌ܥྻੑ ଟ࣍ݩੑʢ૬ؔੑʣ
݁ہͲ͏͍͏ͱ͖ʹ ػցֶश͕͑Δͷʁ
wσʔλͷ࣌ܥྻੑΛߟྀ͍ͨ͠߹ w͜ͷ࣌ظͷ͜ͷ࣌ؒଳʹͦͷҟৗ͡Όͳ͍ʁ Έ͍ͨͳύλʔϯ wσʔλಉ࢜ͷ૬ؔଟ࣍ݩੑΛߟྀ͍ͨ͠߹ wͦͷͷ߹ͤҟৗ͡Όͳ͍ʁΈ͍ͨͳύλʔϯ ػցֶश͕༗ޮͳέʔε
wσʔλͷ࣌ܥྻੑΛߟྀ͍ͨ͠߹ w͜ͷ࣌ظͷ͜ͷ࣌ؒଳʹͦͷҟৗ͡Όͳ͍ʁ Έ͍ͨͳύλʔϯ wσʔλಉ࢜ͷ૬ؔଟ࣍ݩੑΛߟྀ͍ͨ͠߹ wͦͷͷ߹ͤҟৗ͡Όͳ͍ʁΈ͍ͨͳύλʔϯ ػցֶश͕༗ޮͳέʔε ͞Βʹͦͷ྆ํͷଟ࣍ݩ࣌ܥྻσʔλ͔Βͷࣝൃݟɺ ϧʔϧϕʔεͰ͘͠ɺػցֶशͷಘҙ
͡Ό͋Ͳ͏ͬͯػցֶशΛ ద༻͍ͯ͘͠ͷ͔ʁ
αʔόΛଟ࣍ݩ࣌ܥྻσʔλͱͯ͠ଊ͑ɺ ͦͷಛΛநग़͢ΔʢಛϕΫτϧԽʣ ಘΒΕͨಛ͔Βঢ়ଶΛਫ਼៛ʹѲ͢Δ ʢෛՙঢ়گͷѲɺҟৗ༧ଌͳͲʣ
·ͣಛϕΫτϧԽ
ಛϕΫτϧԽ ʮใਪનγεςϜೖɿߨٛεϥΠυʯΑΓҾ༻ IUUQTXXXTMJEFTIBSFOFU,FOUB0LVTT
ಛϕΫτϧԽ ʮใਪનγεςϜೖɿߨٛεϥΠυʯΑΓҾ༻ IUUQTXXXTMJEFTIBSFOFU,FOUB0LVTT αʔό ❓
αʔόͷಛϕΫτϧԽ αʔόͷঢ়ଶΛΑ͘දݱͨ͠ಛϕΫτϧͷઃܭ͕ॏཁ $16༻ ϝϞϦ༻ -" ɹɹɹ
ಛϕΫτϧ ن֨Խ ಛҟղ Χʔωϧؔ FUD ಛϕΫτϧͷઃܭࣗ༝͕ߴ͍ αʔό ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾɾɾ ࣌ؒ ଟ࣍ݩ࣌ܥྻσʔλ ن֨Խ ࣌ؒ
࠷ߴͷಛϕΫτϧ ͕ಘΒΕͨΒʜ
ಛϕΫτϧΛͬͨαʔόࢹ αʔόͷঢ়ଶΛදݱͨ͠ ಛϕΫτϧ ΞϧΰϦζϜͷબࣗ༝͕ߴ͍ ࣌ؒ 0OF$MBTT 47. ࠞ߹ Ϟσϧ ෦ۭؒ๏
σΟʔϓ ϥʔχϯά
IUUQTTQFBLFSEFDLDPNTVHJZBNBNBDLFSFMNFFUVQOVNCFS ࣄྫɿ.BDLFSFMʢגࣜձࣾͯͳʣ
͍ͯ͠ΔΞϧΰϦζϜ
࣌ܥྻΫϥελϦϯά IUUQTCMPHUTVSVCFFUFDIFOUSZ IUUQTCMPHUTVSVCFFUFDIFOUSZ ڭࢣͳֶ͠शͰ͋ΔΫϥελϦϯάΛ࣌ܥྻσʔλʹదԠ ͨ͠ͷ
ͳͥΫϥελϦϯάʁ ϗεςΟϯάαʔόͷಛ wಉ͡ϩʔϧʢׂʣͰΘΕ͍ͯΔαʔόͷ͕ଟ͍ ʢ-PMJQPQͩͱඦεέʔϧʣ wಉҰϩʔϧͰ͋Δ͕ɺαʔόຖʹಛ͕େ͖͘ҟͳΔ w࣌ؒଳʹΑͬͯෛՙঢ়ଶ͕େ͖͘ҟͳΔ ֎ΕݕมԽݕͳͲͷϝτϦΫεͷઈରΛ༻͍ ͨҟৗݕΑΓɺ૬ରతʹݟͯଞͱৼΔ͍͕ҟͳΔͷ ݕग़͢Δํ͕૬ੑ͕ྑͦ͞͏
࣌ܥྻΫϥελϦϯάͷద༻Πϝʔδ ಛϕΫτϧಉ࢜ͷྨࣅΛࢉग़͠ɺଞͱৼΔ͍͕ ҟͳΔαʔόΛ͋ͿΓग़͢ αʔόΛ্ۭؒͷͱͯ͠දݱͯ͠ ಉ࢜ͷڑʢྨࣅʣΛࢉग़ ूஂ͔ΒΕ͍ͯΔ ͷΛҟৗͱ͢Δ ࣌ؒ ͭͷʹͷαʔόͷ ଟ࣍ݩ࣌ܥྻσʔλͷ
ใ͕ೖ͍ͬͯΔΠϝʔδ
UTDMVTUFS࣌ܥྻΫϥελϦϯάύοέʔδ ಈత࣌ؒ৳ॖ๏ʢ%58ʣɾLNFEPJET๏Λ࣮
UTDMVTUFS࣌ܥྻΫϥελϦϯάϥΠϒϥϦ ࣍ݩআྨࣅࢉग़ͷख๏ͳͲɺಠཱͨ͠ෳͷॲཧ ͷΈ߹ΘͤΛࣗ༝ʹม͑ΒΕΔ IUUQTVNFYQFSUVNFEVNZpMFQVCMJDBUJPO@QEG
·ͱΊ wαʔό্Ͱಈ࡞͢Δίϯςϯπ͕ཧͰ͖ͣɺҟৗ੍͕ޚ͠ ͮΒ͍ϗεςΟϯάڥʹ͓͍ͯػցֶशΛ༻͍ͨαʔόࢹ ༗ޮͳͷͰͳ͍͔ wαʔόΛ࣌ܥྻଟ࣍ݩσʔλͱͯ͠ଊ͑ɺαʔόͷঢ়ଶΛΑ ͘දݱͨ͠ಛϕΫτϧΛઃܭ͢Δ͜ͱ͕ॏཁ wಛϕΫτϧΛͲ͏͏͔ʹଟ͘ͷબ͕͋ΓɺϗεςΟ ϯάαʔόʹ͓͍ͯ࣌ܥྻΫϥελϦϯά͕༗ޮͳͷͰͳ ͍͔ͱߟ͍͑ͯΔ w͍·ໝ͍ͯ͠Δ͜ͱΛ࣮ફ͍͖͍ͯͨ͠
͝ਗ਼ௌ͋Γ͕ͱ͏ ͍͟͝·ͨ͠ʂʂ