Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習でサーバの負荷状態を把握したい
Search
tsurubee
March 22, 2019
Technology
7
2.1k
機械学習でサーバの負荷状態を把握したい
tsurubee
March 22, 2019
Tweet
Share
More Decks by tsurubee
See All by tsurubee
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
450
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
2.8k
DeepCrysTet: A Deep Learning Approach Using Tetrahedral Mesh for Predicting Properties of Crystalline Materials
tsurubee
0
1.1k
3次元メッシュで表現した結晶構造を用いた材料物性の予測に向けた深層学習モデルの設計 / Design of Deep Learning Model for Predicting Material Properties Using Crystal Structure Represented by Three-Dimensional Mesh
tsurubee
1
2.3k
分散システムの性能異常に対する機械学習の解釈性に基づく原因診断手法 / A Method for Diagnosing the Causes of Performance Issues in Distributed Systems Based on the Interpretability of Machine Learning
tsurubee
0
1.5k
機械学習の解釈性に関する研究動向とシステム運用への応用 / A Survey on Interpretable Machine Learning and Its Application for System Operation
tsurubee
0
360
機械学習モデルの局所的な解釈に着目したシステムにおける異常の原因診断手法の構想
tsurubee
0
7.9k
アニーリングマシンを活用したエッジAIにおける 生成モデルの学習効率化のためのアーキテクチャ
tsurubee
0
1.6k
さくらインターネット研究所で研究に再挑戦した私の半年間の取り組み
tsurubee
1
3.1k
Other Decks in Technology
See All in Technology
Goに育てられ開発者向けセキュリティ事業を立ち上げた僕が今向き合う、AI × セキュリティの最前線 / Go Conference 2025
flatt_security
0
350
後進育成のしくじり〜任せるスキルとリーダーシップの両立〜
matsu0228
7
2.5k
LLM時代にデータエンジニアの役割はどう変わるか?
ikkimiyazaki
1
570
生成AIで「お客様の声」を ストーリーに変える 新潮流「Generative ETL」
ishikawa_satoru
1
320
AI時代だからこそ考える、僕らが本当につくりたいスクラムチーム / A Scrum Team we really want to create in this AI era
takaking22
6
3.5k
SoccerNet GSRの紹介と技術応用:選手視点映像を提供するサッカー作戦盤ツール
mixi_engineers
PRO
1
180
自動テストのコストと向き合ってみた
qa
0
180
BirdCLEF+2025 Noir 5位解法紹介
myso
0
200
PLaMoの事後学習を支える技術 / PFN LLMセミナー
pfn
PRO
9
3.9k
pprof vs runtime/trace (FlightRecorder)
task4233
0
170
Large Vision Language Modelを用いた 文書画像データ化作業自動化の検証、運用 / shibuya_AI
sansan_randd
0
110
リーダーになったら未来を語れるようになろう/Speak the Future
sanogemaru
0
280
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
5
190
The Pragmatic Product Professional
lauravandoore
36
6.9k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
890
Into the Great Unknown - MozCon
thekraken
40
2.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Docker and Python
trallard
46
3.6k
Transcript
!UTVSVCFF(.01FQBCP *OD )PTUJOH$BTVBM5BMLT ػցֶशͰαʔόͷ ෛՙঢ়ଶΛѲ͍ͨ͠
ࣗݾհ (.0ϖύϘגࣜձࣾ ϗεςΟϯάࣄۀ෦ ΠϯϑϥνʔϜ !UTVSVCFF
None
ࠓ͢͜ͱ wʮΠϯϑϥºσʔλαΠΤϯεʯʹ͍ͭͯ͜Μͳ͜ͱ Ͱ͖Δͱ໘നͦ͏ͩͳʔͱࢲ͕ߟ͍͑ͯΔ͜ͱ wࠓճαʔόࢹʹযΛͯͯ͠·͢
wΠϯϑϥͷݱʹʑେྔͷσʔλ͕ྲྀΕ͍ͯΔ wσʔλΛߴղ૾ͰऔಘɾੵͰ͖Δڥ͕͖͍ͬͯͯΔ ʢ1SPNFUIFVTɺ,BGLBͳͲʣ wσʔλੵ͢Δ͚ͩͰͳ͘׆༻͍ͨ͠ wੵͨ͠େྔͷσʔλʹػցֶशΛద༻Ͱ͖Εɺ৽ͨͳ ࣝൃݟʹܨ͕ΓՁΛͰ͖ΔͷͰͳ͍͔ എܠɿҰൠ
wϗεςΟϯάαʔόҟৗ͕ൃੜ͍͢͠ˍ੍ޚͮ͠Β͍ wߴूੵͷڞ༻αʔό wαʔό্Ͱಈ࡞͢ΔίϯςϯπΛཧͰ͖ͳ͍ wϢʔβαʔόΛબͳ͍ͨΊɺՄೳͳݶΓฏʹշదͳ αʔόڥΛఏڙ͍ͨ͠ എܠɿϨϯλϧαʔόʢ-PMJQPQ)FUFNMʣ
wϗεςΟϯάαʔόҟৗ͕ൃੜ͍͢͠ˍ੍ޚͮ͠Β͍ wߴूੵͷڞ༻αʔό wαʔό্Ͱಈ࡞͢ΔίϯςϯπΛཧͰ͖ͳ͍ wϢʔβαʔόΛબͳ͍ͨΊɺՄೳͳݶΓฏʹշదͳ αʔόڥΛఏڙ͍ͨ͠ എܠɿϨϯλϧαʔόʢ-PMJQPQ)FUFNMʣ αʔόͷঢ়ଶΛਫ਼៛ʹѲ੍ͯ͠ޚ͍ͨ͠
wϗεςΟϯάαʔόҟৗ͕ൃੜ͍͢͠ˍ੍ޚͮ͠Β͍ wߴूੵͷڞ༻αʔό wαʔό্Ͱಈ࡞͢ΔίϯςϯπΛཧͰ͖ͳ͍ wϢʔβαʔόΛબͳ͍ͨΊɺՄೳͳݶΓฏʹշదͳ αʔόڥΛఏڙ͍ͨ͠ എܠɿϨϯλϧαʔόʢ-PMJQPQ)FUFNMʣ αʔόͷঢ়ଶΛਫ਼៛ʹѲ੍ͯ͠ޚ͍ͨ͠ ػցֶशʹΑΔ Ξϓϩʔν͕༗ޮ
wαʔόͷϦιʔε༻ঢ়گϩάͳͲͷࢹରͷϝτϦ Ϋε͝ͱʹᮢΛઃఆ͠ɺͦͷᮢΛ্ճΔ߹ʹΞϥʔτ Λൃใ͢Δʮᮢϕʔεͷࢹʯ͕Ұൠత αʔόࢹͷݱঢ় $16༻ ࣌ؒ ᮢ ΞϥʔτΛൃใ
ݱঢ়ΛѲ্ͨ͠Ͱ ඞͣߟ͑ͳ͚ΕͳΒͳ͍ ͜ͱ͕͋Δ
ຊʹػցֶश͕ඞཁͳͷ͔ ʮ.BDIJOF-FBSOJOH5IF)JHI*OUFSFTU$SFEJU$BSEPG 5FDIOJDBM%FCUʯ %4DVMMFZFUBM (PPHMF wػցֶशΛγεςϜʹΈࠐΉͷେ͖ͳٕज़తෛ࠴Λ ๊͑ࠐΉϦεΫ͕͋Δ͜ͱΛೝࣝ͢Δ wจதͰ༷ʑͳϦεΫཁҼʹ͍ͭͯઆ໌͞Ε͍ͯΔ
ຊʹػցֶश͕ඞཁͳͷ͔ ʮ.BDIJOF-FBSOJOH5IF)JHI*OUFSFTU$SFEJU$BSEPG 5FDIOJDBM%FCUʯ %4DVMMFZFUBM (PPHMF wػցֶशΛγεςϜʹΈࠐΉͷେ͖ͳٕज़తෛ࠴Λ ๊͑ࠐΉϦεΫ͕͋Δ͜ͱΛೝࣝ͢Δ wจதͰ༷ʑͳϦεΫཁҼʹ͍ͭͯઆ໌͞Ε͍ͯΔ ػցֶशΛʮ͏ʯ͜ͱ͕తʹͳͬͯͳΒͳ͍
Θͳͯ͘ࡁΉͳΒΘͳ͍͕࠷ྑͷબ
ᮢϕʔεͷࢹͷݶք ࢹͷਫ਼Λ্͛ΔͨΊʹ໌ࣔతʹࣄલࣝΛೖΕͯ ϧʔϧΛ૿͍͔ͯ͘͠͠ͳ͍ ྫ͑ɺ ̍ฏͷ"͔࣌Β#࣌ͷؒͰɺ͔ͭαʔόΛϦϦʔεͯ͠ ͔Β$ϲ݄ະຬͷ$16༻͕%Λ͑ͨͱ͖ҟৗ ̎$16༻͕&ҎͰ͋Δͱ͖ʹϝϞϦ༻͕' Ҏ্ʹͳͬͨͱ͖ҟৗ
ᮢϕʔεͷࢹͷݶք ࢹͷਫ਼Λ্͛ΔͨΊʹ໌ࣔతʹࣄલࣝΛೖΕͯ ϧʔϧΛ૿͍͔ͯ͘͠͠ͳ͍ ྫ͑ɺ ̍ฏͷ"͔࣌Β#࣌ͷؒͰɺ͔ͭαʔόΛϦϦʔεͯ͠ ͔Β$ϲ݄ະຬͷ$16༻͕%Λ͑ͨͱ͖ҟৗ ̎$16༻͕&ҎͰ͋Δͱ͖ʹϝϞϦ༻͕' Ҏ্ʹͳͬͨͱ͖ҟৗ ਓ͕ؒ໌ࣔతʹࢦఆɾཧͰ͖Δϧʔϧͷʹݶք͕͋Δ JGจࠈʹ͍͍ؕͬͯ͘ɾɾ
ᮢϕʔεͷࢹͷݶք ࢹͷਫ਼Λ্͛ΔͨΊʹ໌ࣔతʹࣄલࣝΛೖΕͯ ϧʔϧΛ૿͍͔ͯ͘͠͠ͳ͍ ྫ͑ɺ ̍ฏͷ"͔࣌Β#࣌ͷؒͰɺ͔ͭαʔόΛϦϦʔεͯ͠ ͔Β$ϲ݄ະຬͷ$16༻͕%Λ͑ͨͱ͖ҟৗ ̎$16༻͕&ҎͰ͋Δͱ͖ʹϝϞϦ༻͕' Ҏ্ʹͳͬͨͱ͖ҟৗ ਓ͕ؒ໌ࣔతʹࢦఆɾཧͰ͖Δϧʔϧͷʹݶք͕͋Δ JGจࠈʹ͍͍ؕͬͯ͘ɾɾ
࣌ܥྻੑ
ᮢϕʔεͷࢹͷݶք ࢹͷਫ਼Λ্͛ΔͨΊʹ໌ࣔతʹࣄલࣝΛೖΕͯ ϧʔϧΛ૿͍͔ͯ͘͠͠ͳ͍ ྫ͑ɺ ̍ฏͷ"͔࣌Β#࣌ͷؒͰɺ͔ͭαʔόΛϦϦʔεͯ͠ ͔Β$ϲ݄ະຬͷ$16༻͕%Λ͑ͨͱ͖ҟৗ ̎$16༻͕&ҎͰ͋Δͱ͖ʹϝϞϦ༻͕' Ҏ্ʹͳͬͨͱ͖ҟৗ ਓ͕ؒ໌ࣔతʹࢦఆɾཧͰ͖Δϧʔϧͷʹݶք͕͋Δ JGจࠈʹ͍͍ؕͬͯ͘ɾɾ
࣌ܥྻੑ ଟ࣍ݩੑʢ૬ؔੑʣ
݁ہͲ͏͍͏ͱ͖ʹ ػցֶश͕͑Δͷʁ
wσʔλͷ࣌ܥྻੑΛߟྀ͍ͨ͠߹ w͜ͷ࣌ظͷ͜ͷ࣌ؒଳʹͦͷҟৗ͡Όͳ͍ʁ Έ͍ͨͳύλʔϯ wσʔλಉ࢜ͷ૬ؔଟ࣍ݩੑΛߟྀ͍ͨ͠߹ wͦͷͷ߹ͤҟৗ͡Όͳ͍ʁΈ͍ͨͳύλʔϯ ػցֶश͕༗ޮͳέʔε
wσʔλͷ࣌ܥྻੑΛߟྀ͍ͨ͠߹ w͜ͷ࣌ظͷ͜ͷ࣌ؒଳʹͦͷҟৗ͡Όͳ͍ʁ Έ͍ͨͳύλʔϯ wσʔλಉ࢜ͷ૬ؔଟ࣍ݩੑΛߟྀ͍ͨ͠߹ wͦͷͷ߹ͤҟৗ͡Όͳ͍ʁΈ͍ͨͳύλʔϯ ػցֶश͕༗ޮͳέʔε ͞Βʹͦͷ྆ํͷଟ࣍ݩ࣌ܥྻσʔλ͔Βͷࣝൃݟɺ ϧʔϧϕʔεͰ͘͠ɺػցֶशͷಘҙ
͡Ό͋Ͳ͏ͬͯػցֶशΛ ద༻͍ͯ͘͠ͷ͔ʁ
αʔόΛଟ࣍ݩ࣌ܥྻσʔλͱͯ͠ଊ͑ɺ ͦͷಛΛநग़͢ΔʢಛϕΫτϧԽʣ ಘΒΕͨಛ͔Βঢ়ଶΛਫ਼៛ʹѲ͢Δ ʢෛՙঢ়گͷѲɺҟৗ༧ଌͳͲʣ
·ͣಛϕΫτϧԽ
ಛϕΫτϧԽ ʮใਪનγεςϜೖɿߨٛεϥΠυʯΑΓҾ༻ IUUQTXXXTMJEFTIBSFOFU,FOUB0LVTT
ಛϕΫτϧԽ ʮใਪનγεςϜೖɿߨٛεϥΠυʯΑΓҾ༻ IUUQTXXXTMJEFTIBSFOFU,FOUB0LVTT αʔό ❓
αʔόͷಛϕΫτϧԽ αʔόͷঢ়ଶΛΑ͘දݱͨ͠ಛϕΫτϧͷઃܭ͕ॏཁ $16༻ ϝϞϦ༻ -" ɹɹɹ
ಛϕΫτϧ ن֨Խ ಛҟղ Χʔωϧؔ FUD ಛϕΫτϧͷઃܭࣗ༝͕ߴ͍ αʔό ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾ ɾɾɾ ࣌ؒ ଟ࣍ݩ࣌ܥྻσʔλ ن֨Խ ࣌ؒ
࠷ߴͷಛϕΫτϧ ͕ಘΒΕͨΒʜ
ಛϕΫτϧΛͬͨαʔόࢹ αʔόͷঢ়ଶΛදݱͨ͠ ಛϕΫτϧ ΞϧΰϦζϜͷબࣗ༝͕ߴ͍ ࣌ؒ 0OF$MBTT 47. ࠞ߹ Ϟσϧ ෦ۭؒ๏
σΟʔϓ ϥʔχϯά
IUUQTTQFBLFSEFDLDPNTVHJZBNBNBDLFSFMNFFUVQOVNCFS ࣄྫɿ.BDLFSFMʢגࣜձࣾͯͳʣ
͍ͯ͠ΔΞϧΰϦζϜ
࣌ܥྻΫϥελϦϯά IUUQTCMPHUTVSVCFFUFDIFOUSZ IUUQTCMPHUTVSVCFFUFDIFOUSZ ڭࢣͳֶ͠शͰ͋ΔΫϥελϦϯάΛ࣌ܥྻσʔλʹదԠ ͨ͠ͷ
ͳͥΫϥελϦϯάʁ ϗεςΟϯάαʔόͷಛ wಉ͡ϩʔϧʢׂʣͰΘΕ͍ͯΔαʔόͷ͕ଟ͍ ʢ-PMJQPQͩͱඦεέʔϧʣ wಉҰϩʔϧͰ͋Δ͕ɺαʔόຖʹಛ͕େ͖͘ҟͳΔ w࣌ؒଳʹΑͬͯෛՙঢ়ଶ͕େ͖͘ҟͳΔ ֎ΕݕมԽݕͳͲͷϝτϦΫεͷઈରΛ༻͍ ͨҟৗݕΑΓɺ૬ରతʹݟͯଞͱৼΔ͍͕ҟͳΔͷ ݕग़͢Δํ͕૬ੑ͕ྑͦ͞͏
࣌ܥྻΫϥελϦϯάͷద༻Πϝʔδ ಛϕΫτϧಉ࢜ͷྨࣅΛࢉग़͠ɺଞͱৼΔ͍͕ ҟͳΔαʔόΛ͋ͿΓग़͢ αʔόΛ্ۭؒͷͱͯ͠දݱͯ͠ ಉ࢜ͷڑʢྨࣅʣΛࢉग़ ूஂ͔ΒΕ͍ͯΔ ͷΛҟৗͱ͢Δ ࣌ؒ ͭͷʹͷαʔόͷ ଟ࣍ݩ࣌ܥྻσʔλͷ
ใ͕ೖ͍ͬͯΔΠϝʔδ
UTDMVTUFS࣌ܥྻΫϥελϦϯάύοέʔδ ಈత࣌ؒ৳ॖ๏ʢ%58ʣɾLNFEPJET๏Λ࣮
UTDMVTUFS࣌ܥྻΫϥελϦϯάϥΠϒϥϦ ࣍ݩআྨࣅࢉग़ͷख๏ͳͲɺಠཱͨ͠ෳͷॲཧ ͷΈ߹ΘͤΛࣗ༝ʹม͑ΒΕΔ IUUQTVNFYQFSUVNFEVNZpMFQVCMJDBUJPO@QEG
·ͱΊ wαʔό্Ͱಈ࡞͢Δίϯςϯπ͕ཧͰ͖ͣɺҟৗ੍͕ޚ͠ ͮΒ͍ϗεςΟϯάڥʹ͓͍ͯػցֶशΛ༻͍ͨαʔόࢹ ༗ޮͳͷͰͳ͍͔ wαʔόΛ࣌ܥྻଟ࣍ݩσʔλͱͯ͠ଊ͑ɺαʔόͷঢ়ଶΛΑ ͘දݱͨ͠ಛϕΫτϧΛઃܭ͢Δ͜ͱ͕ॏཁ wಛϕΫτϧΛͲ͏͏͔ʹଟ͘ͷબ͕͋ΓɺϗεςΟ ϯάαʔόʹ͓͍ͯ࣌ܥྻΫϥελϦϯά͕༗ޮͳͷͰͳ ͍͔ͱߟ͍͑ͯΔ w͍·ໝ͍ͯ͠Δ͜ͱΛ࣮ફ͍͖͍ͯͨ͠
͝ਗ਼ௌ͋Γ͕ͱ͏ ͍͟͝·ͨ͠ʂʂ