Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Chip Placement with Deep Reinforcement L...
Search
tt1717
April 29, 2024
Research
0
91
[論文紹介] Chip Placement with Deep Reinforcement Learning
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
April 29, 2024
Tweet
Share
More Decks by tt1717
See All by tt1717
[論文サーベイ] Survey on Google DeepMind’s Game AI
tt1717
0
14
[論文サーベイ] Survey on VLM for Video Game Quality Assurance
tt1717
0
13
[論文サーベイ] Survey on Pokemon AI 3
tt1717
0
69
[論文サーベイ] Survey on Pokemon AI 2
tt1717
0
58
[論文サーベイ] Survey on Pokemon AI
tt1717
0
93
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
110
[論文サーベイ] Survey on GPT for Games
tt1717
0
69
[論文サーベイ] Survey on World Models for Games
tt1717
0
180
[論文サーベイ] Survey on Linguistic Explanations in Deep Reinforcement Learning of Atari Tasks
tt1717
0
70
Other Decks in Research
See All in Research
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.2k
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
320
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.3k
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
670
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
0
190
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
370
CVPR2025論文紹介:Unboxed
murakawatakuya
0
230
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
450
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
110
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
670
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
Featured
See All Featured
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
34
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
How to Talk to Developers About Accessibility
jct
1
83
Un-Boring Meetings
codingconduct
0
160
New Earth Scene 8
popppiees
0
1.2k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
190
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
60
37k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
0
40
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Transcript
・チップの各コンポーネントを構成要素のグラフとして表現し,こ のグラフを効率的にチップのキャンバス上に配置する方策ネット ワークを訓練する. ・従来のチップ配置では多くが人間の専門家の介入を必要としてい た. ・提案した学習ベース手法では経験を積むことで性能が向上し,新 しいチップ配置を高速に生成できる. ・チップ配置を強化学習問題として扱う新たなアプローチを提案. ・提案手法では過去のチップ配置経験から学習し,未知のチップブ ロックに対して最適化された配置を高速に生成する能力があること
を示した. どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・実際のAIアクセラレータチップ(Google TPUなど)に対して提案 手法を用いてチップ配置を行い,既存のベースライン(人間の専門 家の配置や他の自動配置ツール)と比較することで検証した. ・配置後のPPA(パワー,パフォーマンス,面積)の最適化を評価し た. Chip Placement with Deep Reinforcement Learning (arXiv 2020) Azalia Mirhoseini et al., Google Research. https://arxiv.org/abs/2004.10746 2024/04/28 論文を表す画像 被引用数:224 1/7
❖ 強化学習エージェントがマクロを一つずつ配置する様子を示す ❖ すべてのマクロ配置後,部品は力学的方法(力指向メソッド)を用い て配置される ➢ 力指向メソッド:互いに関連する部品は近くに配置され,関係のない部品 は離れた場所に配置されるようにすること ❖ 報酬はワイヤ長と輻輳の組み合わせで計算され,エージェントが次の
イテレーションでそのパラメータを最適化するために使用する ➢ ワイヤ長:チップの上で部品をつなぐワイヤの長さを推測する方法 ➢ 輻輳:あるエリア内に多くのワイヤが集中してしまう状態 提案手法 2/7
❖ 電子回路の構成要素 (ネットリスト) をGNNで処理 ❖ エッジ埋め込みの処理 ➢ ネットリスト内の異なるコンポーネント間の接続の強さや特性を表現 ❖ マクロ埋め込みの処理
➢ マクロ(大きな回路要素)の特性をベクトル形式で表現 ❖ 方策ネットワークによる処理 ➢ ネットリストの情報を基に,各マクロの配置における「行動」を選択する 提案手法 3/7
❖ CPUのチップ配置結果を視覚化したもの ➢ 左:事前学習済みの方策ネットワークによるゼロショット配置 ➢ 右:ファインチューニング後の方策ネットワークによる配置 ❖ ファインチューニング後の結果は配置が綺麗に揃っている 実験結果 4/7
❖ 強化学習とSA (焼きなまし法) によるサンプル効率の比較 ❖ ワイヤ長 (Wirelength) と輻輳 (Congestion)は低い方が良い ❖
強化学習を使用した提案手法がSAと比較して最適な配置をしていると 解釈できる 実験結果 5/7
❖ 強化学習を使用したチップ配置の最適化手法を提案した ❖ SA (焼きなまし法) と比較して最適配置を達成した まとめ 6/7
❖ チップにおける最適配置問題を強化学習で解こうとするアイデアが面 白かった ❖ 報酬設計の部分や実装コードがどのようになっているのか理解したい 感想 7/7