Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] 状態遷移差分の学習による耐故障ロボットのための強化学習
Search
tt1717
January 26, 2024
Research
0
48
[論文紹介] 状態遷移差分の学習による耐故障ロボットのための強化学習
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
January 26, 2024
Tweet
Share
More Decks by tt1717
See All by tt1717
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
18
[論文サーベイ] Survey on GPT for Games
tt1717
0
29
[論文サーベイ] Survey on World Models for Games
tt1717
0
52
[論文サーベイ] Survey on Linguistic Explanations in Deep Reinforcement Learning of Atari Tasks
tt1717
0
34
[論文サーベイ] Survey on Visualization in Deep Reinforcement Learning of Game Tasks 2
tt1717
0
36
[論文サーベイ] Survey on VLM and Reinforcement Learning in Game Tasks (Minecraft)
tt1717
0
59
[論文紹介] RT-1: Robotics Transformer for Real-World Control at Scale
tt1717
0
90
[論文紹介] Chip Placement with Deep Reinforcement Learning
tt1717
0
53
[論文紹介] Human-level control through deep reinforcement learning
tt1717
0
270
Other Decks in Research
See All in Research
AWS 音声基盤モデル トーク解析AI MiiTelの音声処理について
ken57
0
130
Tiaccoon: コンテナネットワークにおいて複数トランスポート方式で統一的なアクセス制御
hiroyaonoe
0
400
Remote Sensing Vision-Language Foundation Models without Annotations via Ground Remote Alignment
satai
2
120
医療支援AI開発における臨床と情報学の連携を円滑に進めるために
moda0
0
150
博士学位論文予備審査 / Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining
yuukit
1
1.7k
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
390
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1.3k
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
430
Practical The One Person Framework
asonas
1
2.1k
CoRL2024サーベイ
rpc
1
1.5k
第79回 産総研人工知能セミナー 発表資料
agiats
3
200
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
1.5k
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Designing for humans not robots
tammielis
250
25k
Speed Design
sergeychernyshev
27
790
Optimizing for Happiness
mojombo
376
70k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
The Language of Interfaces
destraynor
156
24k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Side Projects
sachag
452
42k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
4 Signs Your Business is Dying
shpigford
182
22k
Transcript
・walker2Dを使用 ・3通りの訓練で検証 1.正常なロボットのみで訓練 (normal policy) 2.ロボットをランダムに故障させながら訓練 (robust policy) 3.状態遷移の差分を用いて故障させながら訓練 (our
policy) どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・故障度合いが大きいとき,our policyとrubust policyで高い収益を 得られた ・故障度合いが小さいとき,our policyで高い収益を得られた 故障の表現 ・故障する関節をランダムに選択し,関節アクチュエータのトルク に対して,故障係数kをかける ・故障係数kは一様分布U(0.0,2.0)からサンプリングする ・MDPにおける遷移関数に対して,正常時の遷移関数と故障時の遷 移関数の差分を利用して故障度合いを表現する手法を提案 状態遷移差分の学習による耐故障ロボットのための強化学習 (JSAI 2020)大里 虹平, 川本 一彦 https://www.jstage.jst.go.jp/article/pjsai/JSAI2020/0/JSAI2020_4Rin134/_pdf 2024/01/26 論文を表す画像 被引用数:- 1/4
故障の表現 ❏ 正常時の遷移関数Tnormalと故障時の遷移関数Tbrokenが異なることを 利用 ❏ Tnormalと遷移関数Tが等しければ正常,そうでなければ故障とみなす ❏ Stdiff:ロボットの故障度合いを反映したパラメータ ❏ St:t時刻の状態
❏ Stnormal:正常時ロボットを仮定してt時刻の状態 ❏ Tnormalは未知関数なのでニューラルネットワークで表現する ❏ 定常環境でStnormalを収集し,これを教師データとして遷移予測ネッ トワークを訓練する ❏ St^normalとSt^diffは予測値を意味する 2/4
実験結果 ❏ 結果 ❏ 故障度合いが大きいとき,our policyとrobust policyで高い収益 ❏ 故障度合いが小さいとき,our policyで高い収益
3/4 ❏ 実験設定 ❏ 正常なロボットのみで訓練 (normal policy) ❏ ロボットをランダムに故障させな がら訓練 (robust policy) ❏ 状態遷移の差分を用いて故障させ ながら訓練 (our policy) ❏ hip,knee,ankleに対してkを0.25刻 みで故障させて評価する ❏ 各手法に対して3つのシード値で 3200万ステップ訓練する
❏ まとめ ❏ 正常時の遷移関数を学習する ❏ 予測される状態遷移と実際の状態遷移の差分を方策ネットワークに加える ❏ これにより,故障度合いを識別しながら学習する手法を提案 ❏ 提案手法では,正常時および故障時に遷移関数を利用しない方策より高い
収益を獲得した ❏ 感想 ❏ 提案手法の概要とイメージを掴むことができたが,方策ネットワークに入 力される「StとSt^diff」の2つを入力するのをどのように実装しているの か気になる (通常,t時刻に対する状態は1つだけいれる) ❏ 他のロボット (hopper,halfcheetah,ant)による実験でも,同様の結果が得 られるのか気になる ❏ この研究では,オンライン強化学習の設定で行っているが,オフライン強 化学習の設定で行った場合,結果に変化があるのか見てみたい まとめと感想 4/4