Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Large scale graph processing with apache giraph
Search
André Kelpe
May 23, 2012
Programming
2
5.5k
Large scale graph processing with apache giraph
André Kelpe
May 23, 2012
Tweet
Share
More Decks by André Kelpe
See All by André Kelpe
Cascading 3 and beyond
fs111
0
180
The Cascading (big) data application framework
fs111
1
240
SELECT ALL THE THINGS - Cascading Lingual, ANSI SQL for Apache Hadoop
fs111
0
200
A whirlwind tour through Lingual: ANSI SQL for Apache Hadoop
fs111
1
190
Tor for everyone!
fs111
0
190
Other Decks in Programming
See All in Programming
楽して成果を出すためのセルフリソース管理
clipnote
0
180
Reading Rails 1.0 Source Code
okuramasafumi
0
250
AI Coding Agentのセキュリティリスク:PRの自己承認とメルカリの対策
s3h
0
230
Performance for Conversion! 分散トレーシングでボトルネックを 特定せよ
inetand
0
2.4k
より安全で効率的な Go コードへ: Protocol Buffers Opaque API の導入
shwatanap
2
350
go test -json そして testing.T.Attr / Kyoto.go #63
utgwkk
3
310
testingを眺める
matumoto
1
140
そのAPI、誰のため? Androidライブラリ設計における利用者目線の実践テクニック
mkeeda
2
1.8k
🔨 小さなビルドシステムを作る
momeemt
4
690
Cache Me If You Can
ryunen344
2
3k
RDoc meets YARD
okuramasafumi
4
170
複雑なドメインに挑む.pdf
yukisakai1225
5
1.2k
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
339
57k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Thoughts on Productivity
jonyablonski
70
4.8k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Practical Orchestrator
shlominoach
190
11k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
Typedesign – Prime Four
hannesfritz
42
2.8k
Into the Great Unknown - MozCon
thekraken
40
2k
Facilitating Awesome Meetings
lara
55
6.5k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Transcript
Large scale graph processing with apache giraph André Kelpe @fs111
http://kel.pe
graphs 101
vertices and edges
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
graphs are everywhere road network, the www, social graphs etc.
graphs can be huge
google knows!
Pregel
Pregel by google Describes graph processing approach based on BSP
(Bulk Synchronous Parallel)
pro-tip: search for „pregel_paper.pdf“ on github ;-)
Properties of Pregel batch-oriented, scalable, fault tolerant processing of graphs
It is not a graph database It is a processing
framework
BSP vertex centric processing in so called supersteps
BSP vertices send messages to each other
BSP synchronization points between supersteps
execution of superstep S Each vertex processes messages generated in
S-1 and send messages to be processed in S+1 and determines to halt.
None
apache giraph
giraph Loose implementation of Pregel ideas on top of Hadoop
M/R coming from yahoo
apache giraph http://incubator.apache.org/giraph/
giraph avoid overhead of classic M/R process but reuse existing
infrastructure
giraph simple map jobs in master worker setup. coordination via
zookeeper. messaging via own RPC protocol. in memory processing. custom input and output formats.
current status version 0.1 released compatible with a multitude of
hadoop versions (we use CDH3 at work) still lots of things to do, join the fun!
the APIs the APIs
Vertex-API /** *@param <I> vertex id * @param <V> vertex
data * @param <E> edge data * @param <M> message data */ class BasicVertex<I extends WritableComparable, V extends Writable, E extends Writable, M extends Writable> void compute(Iterator<M> msgIterator); void sendMsg(I id, M msg); void voteToHalt();
Shortest path example https://cwiki.apache.org/confl uence/display/GIRAPH/Shorte st+Paths+Example
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
private boolean isSource() { return (getVertexId().get() == getContext().getConfiguration().getLong(SOURCE_ID, SOURCE_ID_DEFAULT)); }
@Override public void compute(Iterator<DoubleWritable> msgIterator) { if (getSuperstep() == 0) { setVertexValue(new DoubleWritable(Double.MAX_VALUE)); } double minDist = isSource() ? 0d : Double.MAX_VALUE; while (msgIterator.hasNext()) { minDist = Math.min(minDist, msgIterator.next().get()); } if (minDist < getVertexValue().get()) { setVertexValue(new DoubleWritable(minDist)); for (Edge<LongWritable, FloatWritable> edge : getOutEdgeMap().values()) { sendMsg(edge.getDestVertexId(), new DoubleWritable(minDist + edge.getEdgeValue().get())); } } voteToHalt(); }
GiraphJob job = new GiraphJob(getConf(), getClass().getName()); job.setVertexClass(SimpleShortestPathVertex.class); job.setVertexInputFormatClass(SimpleShortestPathsVertexInputFormat.class); job.setVertexOutputFormatClass( SimpleShortestPathsVertexOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(„/foo/bar/baz“)); FileOutputFormat.setOutputPath(job, new Path(„/foo/bar/quux“)); job.getConfiguration().setLong(SimpleShortestPathsVertex.SOURCE_ID, Long.parseLong(argArray[2])); job.setWorkerConfiguration(minWorkers, maxWorkers), 100.0f); GiraphJob
see also http://incubator.apache.org/giraph/ https://cwiki.apache.org/confluence/displ ay/GIRAPH/Shortest+Paths+Example http://googleresearch.blogspot.com/2009/ 06/large-scale-graph-computing-at- google.html
Thanks! Questions?