Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Large scale graph processing with apache giraph
Search
André Kelpe
May 23, 2012
Programming
2
5.5k
Large scale graph processing with apache giraph
André Kelpe
May 23, 2012
Tweet
Share
More Decks by André Kelpe
See All by André Kelpe
Cascading 3 and beyond
fs111
0
170
The Cascading (big) data application framework
fs111
1
230
SELECT ALL THE THINGS - Cascading Lingual, ANSI SQL for Apache Hadoop
fs111
0
200
A whirlwind tour through Lingual: ANSI SQL for Apache Hadoop
fs111
1
190
Tor for everyone!
fs111
0
190
Other Decks in Programming
See All in Programming
一人でAIプロダクトを作るための工夫 〜技術選定・開発プロセス編〜 / I want AI to work harder
rkaga
12
2.6k
kiroでゲームを作ってみた
iriikeita
0
160
DynamoDBは怖くない!〜テーブル設計の勘所とテスト戦略〜
hyamazaki
1
200
대규모 트래픽을 처리하는 프론트 개발자의 전략
maryang
0
120
生成AI、実際どう? - ニーリーの場合
nealle
0
100
Flutterと Vibe Coding で個人開発!
hyshu
1
250
画像コンペでのベースラインモデルの育て方
tattaka
3
1.6k
オホーツクでコミュニティを立ち上げた理由―地方出身プログラマの挑戦 / TechRAMEN 2025 Conference
lemonade_37
2
470
Constant integer division faster than compiler-generated code
herumi
2
620
抽象化という思考のツール - 理解と活用 - / Abstraction-as-a-Tool-for-Thinking
shin1x1
1
980
GitHub Copilotの全体像と活用のヒント AI駆動開発の最初の一歩
74th
7
2.7k
リッチエディターを安全に開発・運用するために
unachang113
1
380
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Statistics for Hackers
jakevdp
799
220k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
760
Agile that works and the tools we love
rasmusluckow
329
21k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Documentation Writing (for coders)
carmenintech
73
5k
Facilitating Awesome Meetings
lara
54
6.5k
Navigating Team Friction
lara
188
15k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Transcript
Large scale graph processing with apache giraph André Kelpe @fs111
http://kel.pe
graphs 101
vertices and edges
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
graphs are everywhere road network, the www, social graphs etc.
graphs can be huge
google knows!
Pregel
Pregel by google Describes graph processing approach based on BSP
(Bulk Synchronous Parallel)
pro-tip: search for „pregel_paper.pdf“ on github ;-)
Properties of Pregel batch-oriented, scalable, fault tolerant processing of graphs
It is not a graph database It is a processing
framework
BSP vertex centric processing in so called supersteps
BSP vertices send messages to each other
BSP synchronization points between supersteps
execution of superstep S Each vertex processes messages generated in
S-1 and send messages to be processed in S+1 and determines to halt.
None
apache giraph
giraph Loose implementation of Pregel ideas on top of Hadoop
M/R coming from yahoo
apache giraph http://incubator.apache.org/giraph/
giraph avoid overhead of classic M/R process but reuse existing
infrastructure
giraph simple map jobs in master worker setup. coordination via
zookeeper. messaging via own RPC protocol. in memory processing. custom input and output formats.
current status version 0.1 released compatible with a multitude of
hadoop versions (we use CDH3 at work) still lots of things to do, join the fun!
the APIs the APIs
Vertex-API /** *@param <I> vertex id * @param <V> vertex
data * @param <E> edge data * @param <M> message data */ class BasicVertex<I extends WritableComparable, V extends Writable, E extends Writable, M extends Writable> void compute(Iterator<M> msgIterator); void sendMsg(I id, M msg); void voteToHalt();
Shortest path example https://cwiki.apache.org/confl uence/display/GIRAPH/Shorte st+Paths+Example
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
private boolean isSource() { return (getVertexId().get() == getContext().getConfiguration().getLong(SOURCE_ID, SOURCE_ID_DEFAULT)); }
@Override public void compute(Iterator<DoubleWritable> msgIterator) { if (getSuperstep() == 0) { setVertexValue(new DoubleWritable(Double.MAX_VALUE)); } double minDist = isSource() ? 0d : Double.MAX_VALUE; while (msgIterator.hasNext()) { minDist = Math.min(minDist, msgIterator.next().get()); } if (minDist < getVertexValue().get()) { setVertexValue(new DoubleWritable(minDist)); for (Edge<LongWritable, FloatWritable> edge : getOutEdgeMap().values()) { sendMsg(edge.getDestVertexId(), new DoubleWritable(minDist + edge.getEdgeValue().get())); } } voteToHalt(); }
GiraphJob job = new GiraphJob(getConf(), getClass().getName()); job.setVertexClass(SimpleShortestPathVertex.class); job.setVertexInputFormatClass(SimpleShortestPathsVertexInputFormat.class); job.setVertexOutputFormatClass( SimpleShortestPathsVertexOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(„/foo/bar/baz“)); FileOutputFormat.setOutputPath(job, new Path(„/foo/bar/quux“)); job.getConfiguration().setLong(SimpleShortestPathsVertex.SOURCE_ID, Long.parseLong(argArray[2])); job.setWorkerConfiguration(minWorkers, maxWorkers), 100.0f); GiraphJob
see also http://incubator.apache.org/giraph/ https://cwiki.apache.org/confluence/displ ay/GIRAPH/Shortest+Paths+Example http://googleresearch.blogspot.com/2009/ 06/large-scale-graph-computing-at- google.html
Thanks! Questions?