Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Large scale graph processing with apache giraph
Search
André Kelpe
May 23, 2012
Programming
2
5.4k
Large scale graph processing with apache giraph
André Kelpe
May 23, 2012
Tweet
Share
More Decks by André Kelpe
See All by André Kelpe
Cascading 3 and beyond
fs111
0
160
The Cascading (big) data application framework
fs111
1
230
SELECT ALL THE THINGS - Cascading Lingual, ANSI SQL for Apache Hadoop
fs111
0
190
A whirlwind tour through Lingual: ANSI SQL for Apache Hadoop
fs111
1
180
Tor for everyone!
fs111
0
170
Other Decks in Programming
See All in Programming
最新TCAキャッチアップ
0si43
0
140
TypeScriptでライブラリとの依存を限定的にする方法
tutinoko
2
660
Realtime API 入門
riofujimon
0
150
3 Effective Rules for Using Signals in Angular
manfredsteyer
PRO
1
100
Amazon Bedrock Agentsを用いてアプリ開発してみた!
har1101
0
330
Jakarta EE meets AI
ivargrimstad
0
510
Arm移行タイムアタック
qnighy
0
300
Jakarta EE meets AI
ivargrimstad
0
580
Duckdb-Wasmでローカルダッシュボードを作ってみた
nkforwork
0
120
受け取る人から提供する人になるということ
little_rubyist
0
230
弊社の「意識チョット低いアーキテクチャ」10選
texmeijin
5
24k
【Kaigi on Rails 2024】YOUTRUST スポンサーLT
krpk1900
1
330
Featured
See All Featured
Ruby is Unlike a Banana
tanoku
97
11k
Rails Girls Zürich Keynote
gr2m
94
13k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
16k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
370
GraphQLとの向き合い方2022年版
quramy
43
13k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
Code Review Best Practice
trishagee
64
17k
It's Worth the Effort
3n
183
27k
Designing the Hi-DPI Web
ddemaree
280
34k
Done Done
chrislema
181
16k
A better future with KSS
kneath
238
17k
Transcript
Large scale graph processing with apache giraph André Kelpe @fs111
http://kel.pe
graphs 101
vertices and edges
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
graphs are everywhere road network, the www, social graphs etc.
graphs can be huge
google knows!
Pregel
Pregel by google Describes graph processing approach based on BSP
(Bulk Synchronous Parallel)
pro-tip: search for „pregel_paper.pdf“ on github ;-)
Properties of Pregel batch-oriented, scalable, fault tolerant processing of graphs
It is not a graph database It is a processing
framework
BSP vertex centric processing in so called supersteps
BSP vertices send messages to each other
BSP synchronization points between supersteps
execution of superstep S Each vertex processes messages generated in
S-1 and send messages to be processed in S+1 and determines to halt.
None
apache giraph
giraph Loose implementation of Pregel ideas on top of Hadoop
M/R coming from yahoo
apache giraph http://incubator.apache.org/giraph/
giraph avoid overhead of classic M/R process but reuse existing
infrastructure
giraph simple map jobs in master worker setup. coordination via
zookeeper. messaging via own RPC protocol. in memory processing. custom input and output formats.
current status version 0.1 released compatible with a multitude of
hadoop versions (we use CDH3 at work) still lots of things to do, join the fun!
the APIs the APIs
Vertex-API /** *@param <I> vertex id * @param <V> vertex
data * @param <E> edge data * @param <M> message data */ class BasicVertex<I extends WritableComparable, V extends Writable, E extends Writable, M extends Writable> void compute(Iterator<M> msgIterator); void sendMsg(I id, M msg); void voteToHalt();
Shortest path example https://cwiki.apache.org/confl uence/display/GIRAPH/Shorte st+Paths+Example
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
private boolean isSource() { return (getVertexId().get() == getContext().getConfiguration().getLong(SOURCE_ID, SOURCE_ID_DEFAULT)); }
@Override public void compute(Iterator<DoubleWritable> msgIterator) { if (getSuperstep() == 0) { setVertexValue(new DoubleWritable(Double.MAX_VALUE)); } double minDist = isSource() ? 0d : Double.MAX_VALUE; while (msgIterator.hasNext()) { minDist = Math.min(minDist, msgIterator.next().get()); } if (minDist < getVertexValue().get()) { setVertexValue(new DoubleWritable(minDist)); for (Edge<LongWritable, FloatWritable> edge : getOutEdgeMap().values()) { sendMsg(edge.getDestVertexId(), new DoubleWritable(minDist + edge.getEdgeValue().get())); } } voteToHalt(); }
GiraphJob job = new GiraphJob(getConf(), getClass().getName()); job.setVertexClass(SimpleShortestPathVertex.class); job.setVertexInputFormatClass(SimpleShortestPathsVertexInputFormat.class); job.setVertexOutputFormatClass( SimpleShortestPathsVertexOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(„/foo/bar/baz“)); FileOutputFormat.setOutputPath(job, new Path(„/foo/bar/quux“)); job.getConfiguration().setLong(SimpleShortestPathsVertex.SOURCE_ID, Long.parseLong(argArray[2])); job.setWorkerConfiguration(minWorkers, maxWorkers), 100.0f); GiraphJob
see also http://incubator.apache.org/giraph/ https://cwiki.apache.org/confluence/displ ay/GIRAPH/Shortest+Paths+Example http://googleresearch.blogspot.com/2009/ 06/large-scale-graph-computing-at- google.html
Thanks! Questions?