Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Large scale graph processing with apache giraph
Search
André Kelpe
May 23, 2012
Programming
2
5.5k
Large scale graph processing with apache giraph
André Kelpe
May 23, 2012
Tweet
Share
More Decks by André Kelpe
See All by André Kelpe
Cascading 3 and beyond
fs111
0
180
The Cascading (big) data application framework
fs111
1
240
SELECT ALL THE THINGS - Cascading Lingual, ANSI SQL for Apache Hadoop
fs111
0
200
A whirlwind tour through Lingual: ANSI SQL for Apache Hadoop
fs111
1
190
Tor for everyone!
fs111
0
190
Other Decks in Programming
See All in Programming
ユーザーも開発者も悩ませない TV アプリ開発 ~Compose の内部実装から学ぶフォーカス制御~
taked137
0
190
Namespace and Its Future
tagomoris
6
700
JSONataを使ってみよう Step Functionsが楽しくなる実践テクニック #devio2025
dafujii
1
590
Reading Rails 1.0 Source Code
okuramasafumi
0
250
詳解!defer panic recover のしくみ / Understanding defer, panic, and recover
convto
0
250
はじめてのMaterial3 Expressive
ym223
2
880
1から理解するWeb Push
dora1998
7
1.9k
アセットのコンパイルについて
ojun9
0
130
チームのテスト力を鍛える
goyoki
3
700
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
3
240
Tool Catalog Agent for Bedrock AgentCore Gateway
licux
7
2.5k
Ruby Parser progress report 2025
yui_knk
1
450
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
431
66k
For a Future-Friendly Web
brad_frost
180
9.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
How GitHub (no longer) Works
holman
315
140k
Rails Girls Zürich Keynote
gr2m
95
14k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Unsuck your backbone
ammeep
671
58k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Code Reviewing Like a Champion
maltzj
525
40k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Transcript
Large scale graph processing with apache giraph André Kelpe @fs111
http://kel.pe
graphs 101
vertices and edges
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
graphs are everywhere road network, the www, social graphs etc.
graphs can be huge
google knows!
Pregel
Pregel by google Describes graph processing approach based on BSP
(Bulk Synchronous Parallel)
pro-tip: search for „pregel_paper.pdf“ on github ;-)
Properties of Pregel batch-oriented, scalable, fault tolerant processing of graphs
It is not a graph database It is a processing
framework
BSP vertex centric processing in so called supersteps
BSP vertices send messages to each other
BSP synchronization points between supersteps
execution of superstep S Each vertex processes messages generated in
S-1 and send messages to be processed in S+1 and determines to halt.
None
apache giraph
giraph Loose implementation of Pregel ideas on top of Hadoop
M/R coming from yahoo
apache giraph http://incubator.apache.org/giraph/
giraph avoid overhead of classic M/R process but reuse existing
infrastructure
giraph simple map jobs in master worker setup. coordination via
zookeeper. messaging via own RPC protocol. in memory processing. custom input and output formats.
current status version 0.1 released compatible with a multitude of
hadoop versions (we use CDH3 at work) still lots of things to do, join the fun!
the APIs the APIs
Vertex-API /** *@param <I> vertex id * @param <V> vertex
data * @param <E> edge data * @param <M> message data */ class BasicVertex<I extends WritableComparable, V extends Writable, E extends Writable, M extends Writable> void compute(Iterator<M> msgIterator); void sendMsg(I id, M msg); void voteToHalt();
Shortest path example https://cwiki.apache.org/confl uence/display/GIRAPH/Shorte st+Paths+Example
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
private boolean isSource() { return (getVertexId().get() == getContext().getConfiguration().getLong(SOURCE_ID, SOURCE_ID_DEFAULT)); }
@Override public void compute(Iterator<DoubleWritable> msgIterator) { if (getSuperstep() == 0) { setVertexValue(new DoubleWritable(Double.MAX_VALUE)); } double minDist = isSource() ? 0d : Double.MAX_VALUE; while (msgIterator.hasNext()) { minDist = Math.min(minDist, msgIterator.next().get()); } if (minDist < getVertexValue().get()) { setVertexValue(new DoubleWritable(minDist)); for (Edge<LongWritable, FloatWritable> edge : getOutEdgeMap().values()) { sendMsg(edge.getDestVertexId(), new DoubleWritable(minDist + edge.getEdgeValue().get())); } } voteToHalt(); }
GiraphJob job = new GiraphJob(getConf(), getClass().getName()); job.setVertexClass(SimpleShortestPathVertex.class); job.setVertexInputFormatClass(SimpleShortestPathsVertexInputFormat.class); job.setVertexOutputFormatClass( SimpleShortestPathsVertexOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(„/foo/bar/baz“)); FileOutputFormat.setOutputPath(job, new Path(„/foo/bar/quux“)); job.getConfiguration().setLong(SimpleShortestPathsVertex.SOURCE_ID, Long.parseLong(argArray[2])); job.setWorkerConfiguration(minWorkers, maxWorkers), 100.0f); GiraphJob
see also http://incubator.apache.org/giraph/ https://cwiki.apache.org/confluence/displ ay/GIRAPH/Shortest+Paths+Example http://googleresearch.blogspot.com/2009/ 06/large-scale-graph-computing-at- google.html
Thanks! Questions?