Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Large scale graph processing with apache giraph
Search
André Kelpe
May 23, 2012
Programming
2
5.4k
Large scale graph processing with apache giraph
André Kelpe
May 23, 2012
Tweet
Share
More Decks by André Kelpe
See All by André Kelpe
Cascading 3 and beyond
fs111
0
160
The Cascading (big) data application framework
fs111
1
230
SELECT ALL THE THINGS - Cascading Lingual, ANSI SQL for Apache Hadoop
fs111
0
200
A whirlwind tour through Lingual: ANSI SQL for Apache Hadoop
fs111
1
190
Tor for everyone!
fs111
0
170
Other Decks in Programming
See All in Programming
これでLambdaが不要に?!Step FunctionsのJSONata対応について
iwatatomoya
2
3.6k
Semantic Kernelのネイティブプラグインで知識拡張をしてみる
tomokusaba
0
180
Scalaから始めるOpenFeature入門 / Scalaわいわい勉強会 #4
arthur1
1
300
Monixと常駐プログラムの勘どころ / Scalaわいわい勉強会 #4
stoneream
0
270
開発者とQAの越境で自動テストが増える開発プロセスを実現する
92thunder
1
180
14 Years of iOS: Lessons and Key Points
seyfoyun
1
770
LLM Supervised Fine-tuningの理論と実践
datanalyticslabo
3
970
Criando Commits Incríveis no Git
marcelgsantos
2
170
layerx_20241129.pdf
kyoheig3
2
290
KMP와 kotlinx.rpc로 서버와 클라이언트 동기화
kwakeuijin
0
140
선언형 UI에서의 상태관리
l2hyunwoo
0
140
Haze - Real time background blurring
chrisbanes
1
510
Featured
See All Featured
Faster Mobile Websites
deanohume
305
30k
Mobile First: as difficult as doing things right
swwweet
222
9k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
5
440
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.3k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Navigating Team Friction
lara
183
15k
Building Adaptive Systems
keathley
38
2.3k
Code Reviewing Like a Champion
maltzj
520
39k
Six Lessons from altMBA
skipperchong
27
3.5k
Scaling GitHub
holman
458
140k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Typedesign – Prime Four
hannesfritz
40
2.4k
Transcript
Large scale graph processing with apache giraph André Kelpe @fs111
http://kel.pe
graphs 101
vertices and edges
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
graphs are everywhere road network, the www, social graphs etc.
graphs can be huge
google knows!
Pregel
Pregel by google Describes graph processing approach based on BSP
(Bulk Synchronous Parallel)
pro-tip: search for „pregel_paper.pdf“ on github ;-)
Properties of Pregel batch-oriented, scalable, fault tolerant processing of graphs
It is not a graph database It is a processing
framework
BSP vertex centric processing in so called supersteps
BSP vertices send messages to each other
BSP synchronization points between supersteps
execution of superstep S Each vertex processes messages generated in
S-1 and send messages to be processed in S+1 and determines to halt.
None
apache giraph
giraph Loose implementation of Pregel ideas on top of Hadoop
M/R coming from yahoo
apache giraph http://incubator.apache.org/giraph/
giraph avoid overhead of classic M/R process but reuse existing
infrastructure
giraph simple map jobs in master worker setup. coordination via
zookeeper. messaging via own RPC protocol. in memory processing. custom input and output formats.
current status version 0.1 released compatible with a multitude of
hadoop versions (we use CDH3 at work) still lots of things to do, join the fun!
the APIs the APIs
Vertex-API /** *@param <I> vertex id * @param <V> vertex
data * @param <E> edge data * @param <M> message data */ class BasicVertex<I extends WritableComparable, V extends Writable, E extends Writable, M extends Writable> void compute(Iterator<M> msgIterator); void sendMsg(I id, M msg); void voteToHalt();
Shortest path example https://cwiki.apache.org/confl uence/display/GIRAPH/Shorte st+Paths+Example
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
private boolean isSource() { return (getVertexId().get() == getContext().getConfiguration().getLong(SOURCE_ID, SOURCE_ID_DEFAULT)); }
@Override public void compute(Iterator<DoubleWritable> msgIterator) { if (getSuperstep() == 0) { setVertexValue(new DoubleWritable(Double.MAX_VALUE)); } double minDist = isSource() ? 0d : Double.MAX_VALUE; while (msgIterator.hasNext()) { minDist = Math.min(minDist, msgIterator.next().get()); } if (minDist < getVertexValue().get()) { setVertexValue(new DoubleWritable(minDist)); for (Edge<LongWritable, FloatWritable> edge : getOutEdgeMap().values()) { sendMsg(edge.getDestVertexId(), new DoubleWritable(minDist + edge.getEdgeValue().get())); } } voteToHalt(); }
GiraphJob job = new GiraphJob(getConf(), getClass().getName()); job.setVertexClass(SimpleShortestPathVertex.class); job.setVertexInputFormatClass(SimpleShortestPathsVertexInputFormat.class); job.setVertexOutputFormatClass( SimpleShortestPathsVertexOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(„/foo/bar/baz“)); FileOutputFormat.setOutputPath(job, new Path(„/foo/bar/quux“)); job.getConfiguration().setLong(SimpleShortestPathsVertex.SOURCE_ID, Long.parseLong(argArray[2])); job.setWorkerConfiguration(minWorkers, maxWorkers), 100.0f); GiraphJob
see also http://incubator.apache.org/giraph/ https://cwiki.apache.org/confluence/displ ay/GIRAPH/Shortest+Paths+Example http://googleresearch.blogspot.com/2009/ 06/large-scale-graph-computing-at- google.html
Thanks! Questions?