Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
技術力で世界と戦う機械学習コンペティション「Kaggle」の魅力 / Attractiven...
Search
Shotaro Ishihara
September 07, 2019
Technology
3
2.9k
技術力で世界と戦う 機械学習コンペティション「Kaggle」の魅力 / Attractiveness of Kaggle
AIchi勉強会での登壇資料
https://connpass.com/event/134720/
Shotaro Ishihara
September 07, 2019
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
260
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
340
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
64
JOAI2025講評 / joai2025-review
upura
0
540
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
180
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
65
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
310
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
92
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
100
Other Decks in Technology
See All in Technology
進化の早すぎる生成 AI と向き合う
satohjohn
0
460
事業部のプロジェクト進行と開発チームの改善の “時間軸" のすり合わせ
konifar
9
2.2k
TypeScript 6.0で非推奨化されるオプションたち
uhyo
15
5.8k
MCP・A2A概要 〜Google Cloudで構築するなら〜
shukob
0
110
経営から紐解くデータマネジメント
pacocat
9
1.8k
AI時代のインシデント対応 〜時代を切り抜ける、組織アーキテクチャ〜
jacopen
4
180
AI駆動開発によるDDDの実践
dip_tech
PRO
0
170
生成AIシステムとAIエージェントに関する性能や安全性の評価
shibuiwilliam
2
300
AIにおける自由の追求
shujisado
2
420
Dify on AWS の選択肢
ysekiy
0
120
Digital omtanke på Internetdagarna 2025
axbom
PRO
0
160
IPv6-mostly field report from RubyKaigi 2026
sorah
0
240
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Why Our Code Smells
bkeepers
PRO
340
57k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Docker and Python
trallard
46
3.7k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Transcript
ٕज़ྗͰੈքͱઓ͏ ػցֶशίϯϖςΟγϣϯ ʮ,BHHMFʯͷັྗ V !VQVSB ݄ "JDIJษڧձ
ͬͨ͜ͱ͋Δ 2
ฉ͍ͨ͜ͱ͋Δ 3
ຊͷ • ਓೳ "* ͷதͷʮػցֶशʯͱʁ • ػցֶशͷதͷʮڭࢣ͋Γֶशʯͱʁ • ػցֶशίϯϖςΟγϣϯʮ,BHHMFʯͱʁ
ࣗݾհʛV • ͷࣄۀձࣾͰσʔλαΠΤϯςΟετ • ,BHHMF.BTUFS • ࠷ߴϥϯΫҐɺҐೖܦݧ͋Γ • Ѫݝग़
• ౦ւߴߍˠ౦ژେֶˠݱ৬ • ࡢ൩౦ژͰొஃˠࠓேʹ໊ݹʹҠಈ
ࣗݾհʛV
ຊͷ • ਓೳ "* ͷதͷʮػցֶशʯͱʁ • ػցֶशͷதͷʮڭࢣ͋Γֶशʯͱʁ • ػցֶशίϯϖςΟγϣϯʮ,BHHMFʯͱʁ
ਓೳ "* • େ͖͘ྲྀʢ͜ͷྨࣗମʹ͕ٞ͋Δʣ ਓؒͷೳͦͷͷΛͭػցΛ࡞Ζ͏ͱ͢Δཱ ਓ͕ؒೳΛͬͯ͢Δ͜ͱΛػցʹͤ͞Α͏ͱ͢ Δཱ
• ࣮ࡍͷݚڀ΄ͱΜͲޙऀͷཱʢͳͷʹ͔ͬͯ Β͔ͣલऀͷҙຯͰ૽ཱ͗ͯΔք۾͕͋Δʣ ਓೳֶձਓೳͬͯԿʁ IUUQTXXXBJHBLLBJPSKQXIBUTBJ"*XIBUTIUNM
ػցֶश • ίϯϐϡʔλʹώτͷΑ͏ͳֶशೳྗΛ֫ಘ ͤ͞ΔͨΊͷٕज़ͷ૯শ • ਓೳ ∋ ػցֶश •
࠷ۙͷਓೳ ػցֶश ਿࢁক ʰΠϥετͰֶͿػցֶशʱ ߨஊࣾ
ຊͷ • ਓೳ "* ͷதͷʮػցֶशʯͱʁ • ػցֶशͷதͷʮڭࢣ͋Γֶशʯͱʁ • ػցֶशίϯϖςΟγϣϯʮ,BHHMFʯͱʁ
ػցֶशͷྨ • ֶशํ๏ʹґͬͯେ͖͘ྨ • ڭࢣ͋Γֶश • ڭࢣͳֶ͠श • ڧԽֶश
ਿࢁক ʰΠϥετͰֶͿػցֶशʱ ߨஊࣾ
ڭࢣ͋Γֶश • ίϯϐϡʔλʹͱ͑ͷରΛ͍͔ͭ͘ ڭ͑Δ͜ͱʹΑΓɼڭΘ͍ͬͯͳ͍ʹ ਖ਼͘͠ճͰ͖Δ൚ԽೳྗΛίϯϐϡʔ λʹ֫ಘͤ͞Δ ਿࢁক ʰΠϥετͰֶͿػցֶशʱ ߨஊࣾ
ڭࢣ͋Γֶशͷ۩ମྫ • खॻ͖จࣈೝࣝɼԻೝࣝɼը૾ೝࣝɼ໎ ϝʔϧͷࣗಈྨͳͲ
ֶशͷΞϧΰϦζϜ • ͍Ζ͍ΖͳΞϧΰϦζϜ͕։ൃ͞Ε͍ͯΔ • ͦͷҰ͕ͭɺσΟʔϓϥʔχϯά
࡞ͬͯΈͨʢσϞʣ • ʮ໊ݹ౦ژʯͷը૾ྨΞϓϦ • ωοτͰऩूͨ͠ը૾ͦΕͧΕຕ • 7((ʢσΟʔϓϥʔχϯάʣΛར༻ IUUQTXXXNEQJDPNIUN
࡞ͬͯΈͨʢσϞʣ IUUQTVQVSBIBUFOBCMPHDPN FOUSZ
ڭࢣͳֶ͠श • ͑ͷ͔͍ͬͯͳ͍σʔλͷू߹͔Βɺ ༗ӹͳࣝΛ֫ಘ͠Α͏ͱ͢Δ • ੈͷதʹਖ਼ղϥϕϧͷͳ͍σʔλͷํ͕ ѹతʹଟ͍ • ۩ମྫɿΫϥελϦϯάҟৗݕ
ਿࢁক ʰΠϥετͰֶͿػցֶशʱ ߨஊࣾ
ڧԽֶश • ڭࢣ͋Γֶशͱಉ͘͡൚ԽੑೳΛίϯϐϡʔ λʹ֫ಘͤ͞Δ͜ͱ͕ඪ • ͑Λڭ͑ΔΘΓʹɼ༧ଌͨ͑͠ͷ ྑ͞ΛධՁ • ධՁ͕࠷ߴ·ΔΑ͏ʹֶश͢Δ
ਿࢁক ʰΠϥετͰֶͿػցֶशʱ ߨஊࣾ
ڧԽֶशͷ۩ମྫ • ϩϘοτͷࣗಈ੍ޚɼίϯϐϡʔλήʔϜͳͲ • ໌֬ʹਖ਼ղσʔλ͕༩͑ͮΒ͍߹ʹ༻͍ΒΕΔ • ྫɿғޟͰʮͱ͋Δ൫໘ͰԿΛଧͭͷ͕ਖ਼ղʯ͔ ݴ͍Δͷ͍͠ ˠͱ͋ΔखΛଧͬͨΒউͬͨෛ͚ͨͱ͍͏ධՁ
Λͱʹֶश͍ͤͯ͘͜͞ͱͰ͖ͦ͏
ຊͷ • ਓೳ "* ͷதͷʮػցֶशʯͱʁ • ػցֶशͷதͷʮڭࢣ͋Γֶशʯͱʁ • ػցֶशίϯϖςΟγϣϯʮ,BHHMFʯͱʁ
,BHHMFͱ • ओʹڭࢣ͋Γֶश͕ରͷػցֶशϞσϧͷ ੑೳΛڝ͏ίϯϖςΟγϣϯ • (PPHMFࡿԼͷ,BHHMF͕ओ࠵ • ੈքதͷσʔλαΠΤϯςΟετ͕ू͏
(PPHMFτϨϯυ • ۙɺຊͰਓؾ͕ߴ·͍ͬͯΔ
,BHHMFͱ IUUQTXXXTMJEFTIBSFOFU)BSBEB,FJEFWTVNJTVNNFS
,BHHMFϥϯΩϯά IUUQTXXXLBHHMFDPNTJTIJIBSB • ֤ίϯϖͷ্Ґ ˠۚɿ ۜɿ ಔɿ • ۚݸۜݸҎ্
ˠ,BHHMF .BTUFS
,FSOFM%JTDVTTJPO • ,FSOFMʢ࣮ͷެ։ɺࢲ͜Μͳ࣮ͩʂʣ • %JTDVTTJPOʢ͜͏ΔͱείΞ্͕͕Δʂʣ • ੈքதͷࢀՃऀ͕࢛࣌த͍ٞͯ͠Δ • ˞ίϯϖͷॱҐ͚ͩͰͳ͘ɺ,FSOFM
%JTDVTTJPOͰͦΕͧΕϙΠϯτ͕͘
1FU'JOEFSίϯϖ
1FU'JOEFSίϯϖ IUUQTXXXLBHHMFDPNDQFUGJOEFSBEPQUJPOQSFEJDUJPO • 1FU'JOEFSNZ"EPQUJPO1SFEJDUJPO • ݄ʙ݄ʹ։࠵ • ʮػցֶशΛ༻͍ͯɺϚϨʔγΞͷϖοτ γϣοϓͰͷݘɾೣ͕Ҿ͖औΒΕΔૣ͞Λ
༧ଌ͢Δʯͱ͍͏͓
ར༻Ͱ͖Δσʔλ • ϖοτͷը૾ܗࣜσʔλ • આ໌จϖοτͷ໊લͳͲͷςΩετܗࣜσʔλ • ɾମॏɾଐੑͳͲͷςʔϒϧܗࣜσʔλ • ඞཁʹԠͯ͡֎෦σʔλར༻Մೳ
ྨ • ݘɾೣ͕Ҿ͖औΒΕΔ͞ • ϦετΞοϓͷʢʣ • ϦετΞοϓͷʙ
• ϦετΞοϓͷʙ • ϦετΞοϓͷʙ • Ҿ͖औΒΕͳ͍
.PEFM1JQFMJOF IUUQTXXXLBHHMFDPNDQFUGJOEFSBEPQUJPOQSFEJDUJPOEJTDVTTJPO
,BHHMFཱ͕ͭ ͱʹ͔ࣗ͘ͰखΛಈ͔ͤΔΑ͏ʹͳΔ ࣗࣗͷ٬؍తࢦඪͷҰͭʹ ࣾ֎ͷਓ͕૿͑Δ
ࣗͰखΛಈ͔͢ • είΞΛ্͛Δʹʮ%PFWFSZUIJOHʯ • ػցֶशۀͰඞͣ͠Θͳ͍͕ ಛྔΛ࡞Δ෦ʢσʔλͷՄࢹԽɾܗɾूܭ ͳͲʣɺ௨ৗͷۀʹਂؔ͘ΘΔ • ,BHHMFͷίʔυΛίϐϖ͢ΔͷͰࣄ͕͘ͳΔ
• σʔλʹର͢Δצॴʹͭ͘ʢ"*࠷ڧͰͳ͍ʣ
٬؍తࢦඪ • ࣾ֎ͷਓ͔Βʮ͜͏͍͏ͷ͕͖ͳͭʯ ͱೝͯ͠Β͑Δʢָͦ͠͏ͳ͕͋Δͱ ༠ͬͯΒ͑Δ͜ͱʣ • ࣾ֎ͷਓͱൺֱͯࣗ͘͠ͷ࣮ྗ͕͔Δ ͷͰɺ͞ΒͳΔษֶͷϞνϕʔγϣϯʹ
ࣾ֎ͷਓ • LBHHMFSKBTMBDLʢਓҎ্ʣ ˠσʔλੳʹؔ͢Δݟͷڞ༗ • ,BHHMF5PLZP.FFUVQ ˠ Ͱొஃ
• ͦͷଞɺTMBDLUXJUUFSͳͲͰࠃࡍަྲྀ
8JOOFS`T$BMM
ຊͰ,BHHMFºاۀ • ࣾ,BHHMF੍ʢ%F/"ʣ ˠ࠾༻ɾϒϥϯυઓུͷҰͰ͋Δ • ,BHHMFͰͷίϯϖ։࠵ʢϦΫϧʔτɺϝϧΧϦʣ ˠϒϥϯυઓུɺ༏উϞσϧͷ׆༻ • ,BHHMFҎ֎ͷίϯϖʢ4JHOBUFɺΦϯαΠτʣ
ˠ࠾༻ɾϒϥϯυઓུɺ༏উϞσϧͷ׆༻
%F/"ͷ,BHHMF੍ IUUQTEFOBBJLBHHMF
ຊاۀͷ։࠵࣮ ϦΫϧʔτ • Ϩετϥϯͷདྷऀ༧ଌ IUUQTXXXLBHHMFDPNDSFDSVJUSFTUBVSBOUWJTJUPSGPSFDBTUJOH ϝϧΧϦ • ग़Ձ֨ͷਪఆ IUUQTXXXLBHHMFDPNDNFSDBSJQSJDFTVHHFTUJPODIBMMFOHF
ϝϧΧϦͷࣄྫ IUUQTUFDINFSDBSJDPNFOUSZ
։࠵අ༻ɿສԁʁ IUUQTXXXLBHHMFDPNTUBUJDTMJEFTNFFULBHHMFQEG
ϗετ͚ϦϯΫू • IUUQTXXXLBHHMFDPNTUBUJDTMJEFT NFFULBHHMFQEG • IUUQTXXXLBHHMFDPNIPTUJOH JORVJSZ • IUUQTXXXLBHHMFDPNIPTUCVTJOFTT
4JHOBUF • ຊ൛ͷ,BHHMFʁ IUUQTTJHOBUFKQ
ΦϯαΠτ • ΠϕϯτܗࣜͰձʹࢀՃऀΛूΊΔܗࣜ • ύɾϦʔάɺ"CFNB57ɺ%F/" ͳͲଟ IUUQTEBUBTIJQKQQMN
·ͱΊ • ਓೳ "* ͷதͷʮػցֶशʯͱʁ • ػցֶशͷதͷʮڭࢣ͋Γֶशʯͱʁ • ػցֶशίϯϖςΟγϣϯʮ,BHHMFʯͱʁ
,BHHMFͬͯΈ͍ͨਓ