Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
技術力で世界と戦う機械学習コンペティション「Kaggle」の魅力 / Attractiven...
Search
Shotaro Ishihara
September 07, 2019
Technology
3
2.9k
技術力で世界と戦う 機械学習コンペティション「Kaggle」の魅力 / Attractiveness of Kaggle
AIchi勉強会での登壇資料
https://connpass.com/event/134720/
Shotaro Ishihara
September 07, 2019
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
JOAI2025講評 / joai2025-review
upura
0
180
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
130
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
38
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
210
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
36
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
45
Web からのデータ収集と探究事例の紹介 / no94_jsai_seminar
upura
0
310
記者・編集者との協働:情報技術が変えるニュースメディア / Kaishi PU 2024
upura
0
110
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
330
Other Decks in Technology
See All in Technology
複数のGemini CLIが同時開発する狂気 - Jujutsuが実現するAIエージェント協調の新世界
gunta
12
3.2k
Power Automate のパフォーマンス改善レシピ / Power Automate Performance Improvement Recipes
karamem0
0
120
BEYOND THE RAG🚀 ~とりあえずRAG?を超えていけ! 本当に使えるAIエージェント&生成AIプロダクトを目指して~ / BEYOND-THE-RAG-Toward Practical-GenerativeAI-Products-AOAI-DevDay-2025
jnymyk
4
230
2025/07/22_家族アルバム みてねのCRE における生成AI活用事例
masartz
2
110
データエンジニアリング 4年前と変わったこと、 4年前と変わらないこと
tanakarian
2
350
SRE with AI:実践から学ぶ、運用課題解決と未来への展望
yoshiiryo1
1
680
RapidPen: AIエージェントによる高度なペネトレーションテスト自動化の研究開発
laysakura
1
390
OTel 公式ドキュメント翻訳 PJ から始めるコミュニティ活動/Community activities starting with the OTel official document translation project
msksgm
0
220
The Madness of Multiple Gemini CLIs Developing Simultaneously with Jujutsu
gunta
1
2.5k
ObsidianをLLM時代のナレッジベースに! クリッピング→Markdown→CLI連携の実践
srvhat09
7
8.9k
Data Engineering Study#30 LT資料
tetsuroito
1
560
室長の逆襲 :データ活用の陣地を増やすためのヒント
masatoshi0205
0
180
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
282
13k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
How STYLIGHT went responsive
nonsquared
100
5.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.5k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
How to Think Like a Performance Engineer
csswizardry
25
1.8k
The Cult of Friendly URLs
andyhume
79
6.5k
Art, The Web, and Tiny UX
lynnandtonic
301
21k
Side Projects
sachag
455
43k
Transcript
ٕज़ྗͰੈքͱઓ͏ ػցֶशίϯϖςΟγϣϯ ʮ,BHHMFʯͷັྗ V !VQVSB ݄ "JDIJษڧձ
ͬͨ͜ͱ͋Δ 2
ฉ͍ͨ͜ͱ͋Δ 3
ຊͷ • ਓೳ "* ͷதͷʮػցֶशʯͱʁ • ػցֶशͷதͷʮڭࢣ͋Γֶशʯͱʁ • ػցֶशίϯϖςΟγϣϯʮ,BHHMFʯͱʁ
ࣗݾհʛV • ͷࣄۀձࣾͰσʔλαΠΤϯςΟετ • ,BHHMF.BTUFS • ࠷ߴϥϯΫҐɺҐೖܦݧ͋Γ • Ѫݝग़
• ౦ւߴߍˠ౦ژେֶˠݱ৬ • ࡢ൩౦ژͰొஃˠࠓேʹ໊ݹʹҠಈ
ࣗݾհʛV
ຊͷ • ਓೳ "* ͷதͷʮػցֶशʯͱʁ • ػցֶशͷதͷʮڭࢣ͋Γֶशʯͱʁ • ػցֶशίϯϖςΟγϣϯʮ,BHHMFʯͱʁ
ਓೳ "* • େ͖͘ྲྀʢ͜ͷྨࣗମʹ͕ٞ͋Δʣ ਓؒͷೳͦͷͷΛͭػցΛ࡞Ζ͏ͱ͢Δཱ ਓ͕ؒೳΛͬͯ͢Δ͜ͱΛػցʹͤ͞Α͏ͱ͢ Δཱ
• ࣮ࡍͷݚڀ΄ͱΜͲޙऀͷཱʢͳͷʹ͔ͬͯ Β͔ͣલऀͷҙຯͰ૽ཱ͗ͯΔք۾͕͋Δʣ ਓೳֶձਓೳͬͯԿʁ IUUQTXXXBJHBLLBJPSKQXIBUTBJ"*XIBUTIUNM
ػցֶश • ίϯϐϡʔλʹώτͷΑ͏ͳֶशೳྗΛ֫ಘ ͤ͞ΔͨΊͷٕज़ͷ૯শ • ਓೳ ∋ ػցֶश •
࠷ۙͷਓೳ ػցֶश ਿࢁক ʰΠϥετͰֶͿػցֶशʱ ߨஊࣾ
ຊͷ • ਓೳ "* ͷதͷʮػցֶशʯͱʁ • ػցֶशͷதͷʮڭࢣ͋Γֶशʯͱʁ • ػցֶशίϯϖςΟγϣϯʮ,BHHMFʯͱʁ
ػցֶशͷྨ • ֶशํ๏ʹґͬͯେ͖͘ྨ • ڭࢣ͋Γֶश • ڭࢣͳֶ͠श • ڧԽֶश
ਿࢁক ʰΠϥετͰֶͿػցֶशʱ ߨஊࣾ
ڭࢣ͋Γֶश • ίϯϐϡʔλʹͱ͑ͷରΛ͍͔ͭ͘ ڭ͑Δ͜ͱʹΑΓɼڭΘ͍ͬͯͳ͍ʹ ਖ਼͘͠ճͰ͖Δ൚ԽೳྗΛίϯϐϡʔ λʹ֫ಘͤ͞Δ ਿࢁক ʰΠϥετͰֶͿػցֶशʱ ߨஊࣾ
ڭࢣ͋Γֶशͷ۩ମྫ • खॻ͖จࣈೝࣝɼԻೝࣝɼը૾ೝࣝɼ໎ ϝʔϧͷࣗಈྨͳͲ
ֶशͷΞϧΰϦζϜ • ͍Ζ͍ΖͳΞϧΰϦζϜ͕։ൃ͞Ε͍ͯΔ • ͦͷҰ͕ͭɺσΟʔϓϥʔχϯά
࡞ͬͯΈͨʢσϞʣ • ʮ໊ݹ౦ژʯͷը૾ྨΞϓϦ • ωοτͰऩूͨ͠ը૾ͦΕͧΕຕ • 7((ʢσΟʔϓϥʔχϯάʣΛར༻ IUUQTXXXNEQJDPNIUN
࡞ͬͯΈͨʢσϞʣ IUUQTVQVSBIBUFOBCMPHDPN FOUSZ
ڭࢣͳֶ͠श • ͑ͷ͔͍ͬͯͳ͍σʔλͷू߹͔Βɺ ༗ӹͳࣝΛ֫ಘ͠Α͏ͱ͢Δ • ੈͷதʹਖ਼ղϥϕϧͷͳ͍σʔλͷํ͕ ѹతʹଟ͍ • ۩ମྫɿΫϥελϦϯάҟৗݕ
ਿࢁক ʰΠϥετͰֶͿػցֶशʱ ߨஊࣾ
ڧԽֶश • ڭࢣ͋Γֶशͱಉ͘͡൚ԽੑೳΛίϯϐϡʔ λʹ֫ಘͤ͞Δ͜ͱ͕ඪ • ͑Λڭ͑ΔΘΓʹɼ༧ଌͨ͑͠ͷ ྑ͞ΛධՁ • ධՁ͕࠷ߴ·ΔΑ͏ʹֶश͢Δ
ਿࢁক ʰΠϥετͰֶͿػցֶशʱ ߨஊࣾ
ڧԽֶशͷ۩ମྫ • ϩϘοτͷࣗಈ੍ޚɼίϯϐϡʔλήʔϜͳͲ • ໌֬ʹਖ਼ղσʔλ͕༩͑ͮΒ͍߹ʹ༻͍ΒΕΔ • ྫɿғޟͰʮͱ͋Δ൫໘ͰԿΛଧͭͷ͕ਖ਼ղʯ͔ ݴ͍Δͷ͍͠ ˠͱ͋ΔखΛଧͬͨΒউͬͨෛ͚ͨͱ͍͏ධՁ
Λͱʹֶश͍ͤͯ͘͜͞ͱͰ͖ͦ͏
ຊͷ • ਓೳ "* ͷதͷʮػցֶशʯͱʁ • ػցֶशͷதͷʮڭࢣ͋Γֶशʯͱʁ • ػցֶशίϯϖςΟγϣϯʮ,BHHMFʯͱʁ
,BHHMFͱ • ओʹڭࢣ͋Γֶश͕ରͷػցֶशϞσϧͷ ੑೳΛڝ͏ίϯϖςΟγϣϯ • (PPHMFࡿԼͷ,BHHMF͕ओ࠵ • ੈքதͷσʔλαΠΤϯςΟετ͕ू͏
(PPHMFτϨϯυ • ۙɺຊͰਓؾ͕ߴ·͍ͬͯΔ
,BHHMFͱ IUUQTXXXTMJEFTIBSFOFU)BSBEB,FJEFWTVNJTVNNFS
,BHHMFϥϯΩϯά IUUQTXXXLBHHMFDPNTJTIJIBSB • ֤ίϯϖͷ্Ґ ˠۚɿ ۜɿ ಔɿ • ۚݸۜݸҎ্
ˠ,BHHMF .BTUFS
,FSOFM%JTDVTTJPO • ,FSOFMʢ࣮ͷެ։ɺࢲ͜Μͳ࣮ͩʂʣ • %JTDVTTJPOʢ͜͏ΔͱείΞ্͕͕Δʂʣ • ੈքதͷࢀՃऀ͕࢛࣌த͍ٞͯ͠Δ • ˞ίϯϖͷॱҐ͚ͩͰͳ͘ɺ,FSOFM
%JTDVTTJPOͰͦΕͧΕϙΠϯτ͕͘
1FU'JOEFSίϯϖ
1FU'JOEFSίϯϖ IUUQTXXXLBHHMFDPNDQFUGJOEFSBEPQUJPOQSFEJDUJPO • 1FU'JOEFSNZ"EPQUJPO1SFEJDUJPO • ݄ʙ݄ʹ։࠵ • ʮػցֶशΛ༻͍ͯɺϚϨʔγΞͷϖοτ γϣοϓͰͷݘɾೣ͕Ҿ͖औΒΕΔૣ͞Λ
༧ଌ͢Δʯͱ͍͏͓
ར༻Ͱ͖Δσʔλ • ϖοτͷը૾ܗࣜσʔλ • આ໌จϖοτͷ໊લͳͲͷςΩετܗࣜσʔλ • ɾମॏɾଐੑͳͲͷςʔϒϧܗࣜσʔλ • ඞཁʹԠͯ͡֎෦σʔλར༻Մೳ
ྨ • ݘɾೣ͕Ҿ͖औΒΕΔ͞ • ϦετΞοϓͷʢʣ • ϦετΞοϓͷʙ
• ϦετΞοϓͷʙ • ϦετΞοϓͷʙ • Ҿ͖औΒΕͳ͍
.PEFM1JQFMJOF IUUQTXXXLBHHMFDPNDQFUGJOEFSBEPQUJPOQSFEJDUJPOEJTDVTTJPO
,BHHMFཱ͕ͭ ͱʹ͔ࣗ͘ͰखΛಈ͔ͤΔΑ͏ʹͳΔ ࣗࣗͷ٬؍తࢦඪͷҰͭʹ ࣾ֎ͷਓ͕૿͑Δ
ࣗͰखΛಈ͔͢ • είΞΛ্͛Δʹʮ%PFWFSZUIJOHʯ • ػցֶशۀͰඞͣ͠Θͳ͍͕ ಛྔΛ࡞Δ෦ʢσʔλͷՄࢹԽɾܗɾूܭ ͳͲʣɺ௨ৗͷۀʹਂؔ͘ΘΔ • ,BHHMFͷίʔυΛίϐϖ͢ΔͷͰࣄ͕͘ͳΔ
• σʔλʹର͢Δצॴʹͭ͘ʢ"*࠷ڧͰͳ͍ʣ
٬؍తࢦඪ • ࣾ֎ͷਓ͔Βʮ͜͏͍͏ͷ͕͖ͳͭʯ ͱೝͯ͠Β͑Δʢָͦ͠͏ͳ͕͋Δͱ ༠ͬͯΒ͑Δ͜ͱʣ • ࣾ֎ͷਓͱൺֱͯࣗ͘͠ͷ࣮ྗ͕͔Δ ͷͰɺ͞ΒͳΔษֶͷϞνϕʔγϣϯʹ
ࣾ֎ͷਓ • LBHHMFSKBTMBDLʢਓҎ্ʣ ˠσʔλੳʹؔ͢Δݟͷڞ༗ • ,BHHMF5PLZP.FFUVQ ˠ Ͱొஃ
• ͦͷଞɺTMBDLUXJUUFSͳͲͰࠃࡍަྲྀ
8JOOFS`T$BMM
ຊͰ,BHHMFºاۀ • ࣾ,BHHMF੍ʢ%F/"ʣ ˠ࠾༻ɾϒϥϯυઓུͷҰͰ͋Δ • ,BHHMFͰͷίϯϖ։࠵ʢϦΫϧʔτɺϝϧΧϦʣ ˠϒϥϯυઓུɺ༏উϞσϧͷ׆༻ • ,BHHMFҎ֎ͷίϯϖʢ4JHOBUFɺΦϯαΠτʣ
ˠ࠾༻ɾϒϥϯυઓུɺ༏উϞσϧͷ׆༻
%F/"ͷ,BHHMF੍ IUUQTEFOBBJLBHHMF
ຊاۀͷ։࠵࣮ ϦΫϧʔτ • Ϩετϥϯͷདྷऀ༧ଌ IUUQTXXXLBHHMFDPNDSFDSVJUSFTUBVSBOUWJTJUPSGPSFDBTUJOH ϝϧΧϦ • ग़Ձ֨ͷਪఆ IUUQTXXXLBHHMFDPNDNFSDBSJQSJDFTVHHFTUJPODIBMMFOHF
ϝϧΧϦͷࣄྫ IUUQTUFDINFSDBSJDPNFOUSZ
։࠵අ༻ɿສԁʁ IUUQTXXXLBHHMFDPNTUBUJDTMJEFTNFFULBHHMFQEG
ϗετ͚ϦϯΫू • IUUQTXXXLBHHMFDPNTUBUJDTMJEFT NFFULBHHMFQEG • IUUQTXXXLBHHMFDPNIPTUJOH JORVJSZ • IUUQTXXXLBHHMFDPNIPTUCVTJOFTT
4JHOBUF • ຊ൛ͷ,BHHMFʁ IUUQTTJHOBUFKQ
ΦϯαΠτ • ΠϕϯτܗࣜͰձʹࢀՃऀΛूΊΔܗࣜ • ύɾϦʔάɺ"CFNB57ɺ%F/" ͳͲଟ IUUQTEBUBTIJQKQQMN
·ͱΊ • ਓೳ "* ͷதͷʮػցֶशʯͱʁ • ػցֶशͷதͷʮڭࢣ͋Γֶशʯͱʁ • ػցֶशίϯϖςΟγϣϯʮ,BHHMFʯͱʁ
,BHHMFͬͯΈ͍ͨਓ