$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Dynkin Diagrams
Search
USAMI Kosuke
April 13, 2019
Science
0
1.9k
Dynkin Diagrams
※ Docswell に移行しました
https://www.docswell.com/s/usami-k/598YNW-dynkin-diagrams
USAMI Kosuke
April 13, 2019
Tweet
Share
More Decks by USAMI Kosuke
See All by USAMI Kosuke
Onsager代数とその周辺 / Onsager algebra tsudoi
usamik26
0
670
Apple HIG 正式名称クイズ結果発表 / HIG Quiz Result
usamik26
0
210
ゆめみ大技林製作委員会の立ち上げの話 / daigirin project
usamik26
0
350
@ViewLoadingプロパティラッパの紹介と自前で実装する方法 / @ViewLoading property wrapper implementation
usamik26
0
510
これからUICollectionViewを実践活用する人のためのガイド / Guide to UICollectionView
usamik26
1
780
Xcodeとの最近の付き合い方のはなし / Approach To Xcode
usamik26
2
700
UICollectionView Compositional Layout
usamik26
0
830
Coding Swift with Visual Studio Code and Docker
usamik26
0
540
Swift Extension for Visual Studio Code
usamik26
2
1.1k
Other Decks in Science
See All in Science
力学系から見た現代的な機械学習
hanbao
3
3.7k
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
910
機械学習 - DBSCAN
trycycle
PRO
0
1.4k
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
640
MCMCのR-hatは分散分析である
moricup
0
540
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
110
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
700
Ignite の1年間の軌跡
ktombow
0
190
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
290
学術講演会中央大学学員会府中支部
tagtag
0
340
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
310
For a Future-Friendly Web
brad_frost
180
10k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
400
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
0
94
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
370
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Claude Code のすすめ
schroneko
65
200k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
150
Ruling the World: When Life Gets Gamed
codingconduct
0
100
Transcript
ディンキン図形を知る (ルート系とディンキン図形) 宇佐見 公輔 2019 年 4 月 13 日
1
ディンキン図形とは何か 「ルート系(root system) 」と呼ばれる対象を図であらわしたもの が「ディンキン図形(Dynkin diagram) 」です。 Example (ディンキン図形) 2
ルート系とは何か 実ベクトル空間の部分集合で、ある特定の条件(これはもう少し 後で述べます)を満たすものを「ルート系(root system) 」と呼 びます。 Example (ルート系) 3
なぜルート系を考えるのか ルート系は、リー代数(Lie algebra)を分類する研究の中であら われました。 • 複素数体上の有限次元単純リー代数は、ルート分解という直 和分解ができます。 • そこに出てくるルート(root)というベクトルの集合は、あ る一定の性質を持っています。
• この性質をルート系の定義として、ルート系の分類をするこ とでリー代数の分類ができます。 その後、数学の様々な分野でルート系が登場することが知られる ようになりました。 4
ルート系の定義の準備:鏡映 E を有限次元実ベクトル空間、v, w ∈ E の内積を (v|w) とします。 Definition
(超平面) v ∈ E に対して Pv := {w ∈ E | (v|w) = 0} と定義し、v と直交す る超平面(hyperplane)と呼びます。 Definition (鏡映) v ∈ E と x ∈ E に対して、 c(x, v) := 2(x|v) (v|v) と定義し、写像 σv : E → E を以下で定義します。 x → x − c(x, v)v σv を、超平面 Pv に関する鏡映(reflection)と呼びます。 5
ルート系の定義 Definition (ルート系) ∆ ⊂ E がルート系(root system)であるとは、以下を満たすこと です。 1.
∆ は 0 を含まない有限集合で、E を張る。 2. c ∈ R、v ∈ ∆、cv ∈ ∆ のとき、c = ±1 である。 3. v ∈ ∆ のとき、σv(∆) = ∆ である。 4. v, w ∈ ∆ のとき、c(v, w) ∈ Z である。 また、ルート系の元をルート(root)と呼びます。 条件 4 が少し分かりにくいですが、言葉でいえば、 「v の鏡映 σv で w を移したときの差分が v の整数倍になる」という感じになり ます。 6
ルート系の例 Example (2 次元空間のルート系) 7
2 つのルートの関係 ベクトル v, w のなす角を θ とします。 c(v, w)
の定義から c(v, w)c(w, v) = 4 cos2 θ が導けます。 ここで v, w をルートとし、それらが線型独立とすると、 c(v, w) ∈ Z から、 c(v, w)c(w, v) = 0, 1, 2, 3 となることが分かります。 また、θ のとりうる値は以下です。 π 2 , π 3 , 2π 3 , π 4 , 3π 4 , π 6 , 5π 6 8
ルート系の底 ルート系には、基底のようなものが存在しています。 Proposition (ルート系の底) ∆ ⊂ E をルート系とします。以下を満たす Π ⊂
∆ が存在します。 1. Π は E の基底である。 2. v ∈ ∆ を v = e∈Π cee とすると、ce は全て 0 以上の整数、 または全て 0 以下の整数となる。 Π を ∆ の底(base)と呼びます。 9
ディンキン図形の定義 Definition (ディンキン図形) ∆ を n 次元空間のルート系、Π を ∆ の底とします。
以下のように構成されるグラフを ∆ のディンキン図形(Dynkin diagram)と呼びます。 1. n 個のノードを持つ。各ノードは Π の元でラベルづけされる。 2. ノードとノードを何本かの辺で結ぶ。その本数は c(v, w)c(w, v) とする。 (したがって、0〜3 本である) 3. 辺で結ばれたノードについて、(v|v) と (w|w) が異なる場合、 大きいほうのノードから小さいほうのノードへ矢印をつける。 補足:c(v, w)c(w, v) = 1 のときは (v|v) = (w|w) であるため、矢 印がつくのは辺が 2 本または 3 本のときとなります。 10
ディンキン図形の例 Example (2 次元空間のルート系のディンキン図形) 11
なぜディンキン図形を考えるのか ルート系の性質をディンキン図形の性質に置きかえると、簡単な 性質になります。例えば、以下のような性質が導けます。 • ループを持たない。 • 分岐は多くともひとつしかない。 • ひとつのノードから出る辺は 3
本以内である。 また、分岐がある場合にそれぞれの分岐はどのくらいの長さが可 能か、といった議論もできます。 これらを使って可能なディンキン図形を分類することで、ルート 系の分類ができます。 12
ディンキン図形の分類 Theorem (ディンキン図形の分類) ディンキン図形は以下のいずれかと一致する。また、以下のディ ンキン図形に対応するルート系が存在する。 • An (n ≥ 1)
• Bn (n ≥ 2) • Cn (n ≥ 3) • Dn (n ≥ 4) • En (n = 6, 7, 8) • F4 • G2 具体的な図は次ページ以降で。 13
ディンキン図形:古典型 An Bn Cn Dn 14
ディンキン図形:例外型 E6 E7 E8 F4 G2 15
ルート系とディンキン図形の面白さ 個人的に思う、ルート系とディンキン図形の面白さは以下のよう なところです。 • ルート系の性質が簡単なグラフ上の性質に置き換わる • 分類結果が多すぎず少なすぎず、ちょうどいいくらいの種類 • 例外型に感じられるロマン •
いろいろな分野に顔を出す意外性 決して難しい理論ではないので、ぜひ触れてみてください。 また、拡大ディンキン図形など、類似の図形もいろいろあるので、 調べてみると面白いかと思います。 16