Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rotation Group
Search
USAMI Kosuke
November 02, 2019
Science
0
2.2k
Rotation Group
※ Docswell に移行しました
https://www.docswell.com/s/usami-k/K6Y4NM-rotation-group
USAMI Kosuke
November 02, 2019
Tweet
Share
More Decks by USAMI Kosuke
See All by USAMI Kosuke
Onsager代数とその周辺 / Onsager algebra tsudoi
usamik26
0
650
Apple HIG 正式名称クイズ結果発表 / HIG Quiz Result
usamik26
0
190
ゆめみ大技林製作委員会の立ち上げの話 / daigirin project
usamik26
0
340
@ViewLoadingプロパティラッパの紹介と自前で実装する方法 / @ViewLoading property wrapper implementation
usamik26
0
490
これからUICollectionViewを実践活用する人のためのガイド / Guide to UICollectionView
usamik26
1
760
Xcodeとの最近の付き合い方のはなし / Approach To Xcode
usamik26
2
680
UICollectionView Compositional Layout
usamik26
0
810
Coding Swift with Visual Studio Code and Docker
usamik26
0
520
Swift Extension for Visual Studio Code
usamik26
2
1.1k
Other Decks in Science
See All in Science
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
320
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
630
機械学習 - DBSCAN
trycycle
PRO
0
1k
Symfony Console Facelift
chalasr
2
470
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
200
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
260
Accelerated Computing for Climate forecast
inureyes
PRO
0
120
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
120
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
600
研究って何だっけ / What is Research?
ks91
PRO
1
120
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
160
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
610
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
70
11k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
GraphQLとの向き合い方2022年版
quramy
49
14k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
Visualization
eitanlees
148
16k
A Modern Web Designer's Workflow
chriscoyier
696
190k
It's Worth the Effort
3n
187
28k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
A Tale of Four Properties
chriscoyier
160
23k
BBQ
matthewcrist
89
9.8k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
1/17 回転群のはなし 宇佐見 公輔 第 6 回 関西日曜数学 友の会 宇佐見
公輔 回転群のはなし
2/17 最近の趣味数学 関西日曜数学 友の会: Generalized Onsager algebras(第 5 回 /
2019 年 8 月) ルート系とディンキン図形(第 4 回 / 2019 年 4 月) 日曜数学会: リー代数の計算の楽しみ(マスパーティ / 2019 年 10 月) 関西すうがく徒のつどい: 行列の指数関数(第 12 回 / 2019 年 10 月) 執筆参加: 数学デイズ大阪編:低次元のリー代数をみる(Kindle 版発売中) 宇佐見 公輔 回転群のはなし
3/17 2 次元回転行列 2 次元平面 R2 を考えます。 ある点を、原点を中心として反時計回りに角度 t だけ回転させる
作用は、次の行列であらわされます。 Definition R(t) := cos t − sin t sin t cos t 宇佐見 公輔 回転群のはなし
4/17 2 次元回転行列の積 Proposition 2 次元回転行列について次が成り立ちます。 R(t1)R(t2) = R(t1 +
t2) これは計算すれば確認できます。 宇佐見 公輔 回転群のはなし
5/17 2 次元の回転群 R(t1)R(t2) = R(t1 + t2) という関係から、 SO(2)
:= {R(t) | t ∈ R} が可換群であることが分かります。 Proposition 積で閉じている:R(t1)R(t2) ∈ SO(2) 結合法則:R(t1)(R(t2)R(t3)) = (R(t1)R(t2))R(t3) 交換法則:R(t1)R(t2) = R(t2)R(t1) 単位元:R(0) は単位元 逆元:R(t) の逆元は R(−t) 宇佐見 公輔 回転群のはなし
6/17 無限小の回転 回転角 t を「無限小」にとることを考えます。つまり、 cos t = 1 −
1 2! t2 + 1 4! t4 − · · · sin t = t − 1 3! t3 + 1 5! t5 − · · · のうち、2 次以上の項を無視することを考えます。すると、 R(t) = 1 −t t 1 = 1 0 0 1 + t 0 −1 1 0 となります。 宇佐見 公輔 回転群のはなし
7/17 無限小回転の生成行列 先ほどの観察から、次の行列が重要そうに見えてきます。 J := 0 −1 1
0 これを使って、R(t) は以下のように書けます。 R(t) = 1 0 0 1 + t 0 −1 1 0 + O(t2) = I + tJ + O(t2) 宇佐見 公輔 回転群のはなし
8/17 行列の指数関数 Definition 行列 X の指数関数を次のように定義します。 exp X := ∞
k=0 1 k! Xk = I + X + 1 2! X2 + 1 3! X3 + · · · + 1 k! Xk + · · · (これについては、第 12 回 関西すうがく徒のつどいで話しました) 宇佐見 公輔 回転群のはなし
9/17 回転行列と指数関数 R(t) = I + tJ + O(t2) と述べましたが、実は指数関数を使って次
のように書けます。 Proposition 回転行列 R(t) は次のように書けます。 R(t) = exp(tJ) = I + tJ + 1 2! (tJ)2 + 1 3! (tJ)3 + · · · + 1 k! (tJ)k + · · · 宇佐見 公輔 回転群のはなし
10/17 指数関数と三角関数 回転行列は R(t) = (cos t)I + (sin t)J
とも書けるので、以下が分 かります。 Proposition 次が成り立ちます。 exp(tJ) = (cos t)I + (sin t)J 宇佐見 公輔 回転群のはなし
11/17 3 次元の回転 3 次元空間 R3 での回転はもう少し複雑になります。 2 次元の場合は、原点を通る回転軸(回転面に対して垂直な直線) がひとつだけでした。2
次元の回転は回転角という 1 パラメータ であらわせました。 3 次元の場合は、原点を通る回転軸がひとつではありません。回 転軸の向きを決めるためにパラメータを 2 つ使うため、回転角と 合わせて 3 つのパラメータが必要になります。 宇佐見 公輔 回転群のはなし
12/17 3 次元回転行列 Definition 第 1 軸、第 2 軸、第 3
軸のまわりの回転行列 R1(t) := 1 0 0 0 cos t − sin t 0 sin t cos t R2(t) := cos t 0 sin t 0 1 0 − sin t 0 cos t R3(t) := cos t − sin t 0 sin t cos t 0 0 0 1 宇佐見 公輔 回転群のはなし
13/17 3 次元の回転の行列表示 3 次元の回転をひとつの行列で具体的に書こうとすると、少しや やこしい式になります。 しかし、3 次元の回転は R1(t), R2(t),
R3(t) の積であらわすこと ができます。 そのため、この 3 つの回転行列をおさえることで 3 次元の回転群 の本質を知ることができます。 宇佐見 公輔 回転群のはなし
14/17 再び無限小の回転 回転角 t の「無限小」を考えます(t の 2 次以上を無視) 。 R3(t)
= 1 −t 0 t 1 0 0 0 1 = 1 0 0 0 1 0 0 0 1 + t 0 −1 0 1 0 0 0 0 0 = I + tJ3 (J3 をそのように定義する) 宇佐見 公輔 回転群のはなし
15/17 再び回転行列と指数関数 Proposition 回転行列 R1(t), R2(t), R3(t) は次のように書けます。 R1(t) =
exp(tJ1), R2(t) = exp(tJ2), R3(t) = exp(tJ3) ここで J1 := 0 0 0 0 0 −1 0 1 0 , J2 := 0 0 1 0 0 0 −1 0 0 , J3 := 0 −1 0 1 0 0 0 0 0 宇佐見 公輔 回転群のはなし
16/17 3 次元回転の生成行列の関係 Proposition J1, J2, J3 の間には次の関係があります。 [J1, J2]
= −J3 [J2, J3] = −J1 [J3, J1] = −J2 (ここで [X, Y ] := XY − YX) 宇佐見 公輔 回転群のはなし
17/17 さらなる話題 回転行列は、簡単な形の行列から指数関数で生成される 生成行列には、交代子積によってリー代数の構造がある そのリー代数を調べることで回転群のことがわかる 宇佐見 公輔 回転群のはなし