Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building a framework on Mesos: A case study wit...
Search
Vinod Kone
July 23, 2015
Technology
0
100
Building a framework on Mesos: A case study with Jenkins
Vinod Kone
July 23, 2015
Tweet
Share
More Decks by Vinod Kone
See All by Vinod Kone
Nested Containers & Task Groups
vinodkone
0
55
Mesos 1.0
vinodkone
1
60
Fault Tolerance In Mesos
vinodkone
0
99
The Future Data Center
vinodkone
0
38
Mesos Framework API v1
vinodkone
0
45
Other Decks in Technology
See All in Technology
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
1
210
Reinforcement Fine-tuning 基礎〜実践まで
ch6noota
0
190
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
260
AIプラットフォームにおけるMLflowの利用について
lycorptech_jp
PRO
1
170
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
420
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
250
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
230
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
170
re:Invent 2025 ふりかえり 生成AI版
takaakikakei
1
210
AI駆動開発の実践とその未来
eltociear
0
120
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
1.9k
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
1
280
Featured
See All Featured
Navigating Team Friction
lara
191
16k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
What's in a price? How to price your products and services
michaelherold
246
13k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Visualization
eitanlees
150
16k
GraphQLとの向き合い方2022年版
quramy
50
14k
Embracing the Ebb and Flow
colly
88
4.9k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Transcript
Building a framework on Mesos: A case study with Jenkins
@vinodkone
Architecture Master (leader) Spark Scheduler Hadoop Scheduler Jenkins Scheduler Master
(standby) Master (standby) ZooKeeper Slave Hadoop Executor Task1 Spark Executor Task1 Slave Hadoop Executor Task1 Task2 Slave Jenkins Executor Task1
• Scheduler • receives resource offers • launches tasks •
Executor * • executes tasks • launched by the slave • * optional (Command Executor) Slave cpus: 10, mem: 2GB Anatomy of a Framework Scheduler Master Offer cpus:10 mem: 2GB Executor Task cpus: 2 mem: 1GB
Writing a Framework • APIs and drivers • C++, Java,
Python • see example frameworks (src/examples) • Open Source frameworks • Scala: Chronos, Spark • Java: Hadoop, Jenkins, Storm • Python: dpark
Scheduler Callbacks registered(frameworkId, masterInfo) resourceOffers(offers) statusUpdate(taskStatus) ...more Actions launchTasks(offerId, taskInfos,
filters) killTask(taskId) declineOffer(offerId, filters) ...more
Resource offers @override public void resourceOffers(SchedulerDriver driver, List<Offer> offers) {
for (Offer offer : offers) { bool matched = false; for (Request request : requests) { if (matches(offer, request) { matched = true; createMesosTask(offer, request); requests.remove(request); break; } } } } driver.launchTasks(offer.getId(), tasks, filters)
Executor Callbacks registered(executorInfo, frameworkInfo, slaveInfo) launchTask(taskInfo) killTask(taskId) ...more Actions sendStatusUpdate(taskStatus)
sendFrameworkMessage(data) ...more
Status Updates • Executor to inform task state to scheduler
• non-terminal updates (e.g., TASK_RUNNING) • terminal updates (e.g., TASK_FINISHED) • TASK_LOST: (e.g., slave terminated) • Status updates are crucial! • e.g., terminal update frees up resources
Things to keep in mind • Callbacks are single threaded
• i.e., one callback at a time • should not block in a callback! • Actions are asynchronous • e.g., sendStatusUpdate() enqueues the update
Jenkins on Mesos +
Motivation • Jenkins clusters are statically allocated • order of
magnitude smaller than compute cluster • Over utilized • very high build times • Under utilized • wastage of resources source: builds.apache.org
Goals • Make Jenkins elastic • auto scale based on
workload • Harness the compute cluster • already spent $$$ on it • Resource isolation • helps with capacity planning
Jenkins Framework • Jenkins Scheduler • implemented as a Jenkins
plugin • launches Jenkins slaves based on workload • kills idle Jenkins slaves • Command Executor
Slave Architecture Jenkins Master Job Queue Mesos Plugin Jenkins Scheduler
Mesos Master Cloud Command Executor Jenkins Slave JN LP Jenkins
Installing the plugin • Getting the plugin • source code
in mesos repo (git.apache.org/mesos) • build yourself : $ make jenkins • download directly from Jenkins repo (soon) • Installing the plugin • from Jenkins Web UI •$ cp mesos.hpi ${JENKINS_HOME}/plugins
Configuring the plugin • Go to /configure on Jenkins •
add a new Mesos Cloud • give the address of Mesos master • Label the jobs as “mesos” • Caveat: experimental release!
Demo
Questions? @ApacheMesos http://mesos.apache.org