Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Simply Distributed
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Nugroho Herucahyono
October 22, 2015
Technology
0
120
Simply Distributed
Nugroho Herucahyono
October 22, 2015
Tweet
Share
More Decks by Nugroho Herucahyono
See All by Nugroho Herucahyono
Choosing the right technology
xinuc
0
180
This Talk is so Meta
xinuc
1
130
A Tale of a Happy Programmer
xinuc
0
150
Rails on Wiradipa - Jakarta.rb Februari 2012 - Hafiz Badrie Lubiz
xinuc
1
170
Why Ruby? - View from business aspect - Jakarta.rb Februari 2012 - Fajrin Rasyid
xinuc
1
350
Other Decks in Technology
See All in Technology
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
開発メンバーが語るFindy Conferenceの裏側とこれから
sontixyou
2
530
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
150
データ民主化のための LLM 活用状況と課題紹介(IVRy の場合)
wxyzzz
2
630
Amazon Bedrock AgentCore 認証・認可入門
hironobuiga
2
490
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
1.4k
Mosaic AI Gatewayでコーディングエージェントを配るための運用Tips / JEDAI 2026 新春 Meetup! AIコーディング特集
genda
0
150
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
(金融庁共催)第4回金融データ活用チャレンジ勉強会資料
takumimukaiyama
0
110
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
130
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
300
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
960
Featured
See All Featured
Bash Introduction
62gerente
615
210k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Practical Orchestrator
shlominoach
191
11k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
160
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
300
First, design no harm
axbom
PRO
2
1.1k
Designing for Timeless Needs
cassininazir
0
120
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
The Limits of Empathy - UXLibs8
cassininazir
1
210
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
The browser strikes back
jonoalderson
0
360
Transcript
Simply Distributed KNIF 2015, Bandung
Who? Nugroho Herucahyono @xinuc Programmer @Bukalapak
Keandalan Sistem dalam Mendukung Penyediaan Layanan
“Andal" => reliable & scalable
reliable: fault tolerant scalable: able to grow
How a reliable & scalable system built?
Most systems start small
Typical web application Webserver Database Client
Typical web application • Need more features • Serve more
users • Need to be more reliable
More features Add more code Split the system
More users Need to scale machine limitation add more machines
More business value Need more reliable System should be fault
tolerant Self healing Backup, redundancy
How we do it? Current “Best practice”: • Split system
into smaller services • Communicate with http • Scale independently • Gracefully handle failure
How we do it? Load Balancer Search Engine Client Authentication
Content Management Search Scheduler Transaction Database 2 Database 1 Job Queue
How we do it? Current “Best practice” apparently is not
the best: • Requires massive change to our system • Manual load balancing, replication • Manual resource management • Inefficient communication (http? really?)
How we do it? Load Balancer Search Engine Client Authentication
Content Management Search Scheduler Transaction Database 2 Database 1 Job Queue Too Complicated!!
What would a good computer scientist do?
Introduce a new layer of abstraction!
A new layer of abstraction • Handle resource management •
Handle load balancing • Handle service communication • Handle service failure • Handle replication
A new layer of abstraction We need “Operating System” of
a cluster
A new layer of abstraction Cluster Operating system Operating System
Pod Application Hardware Operating System Pod Application Hardware Operating System Pod Application Hardware
Cluster Operating System • Build in interprocess communication • Build
in monitoring & supervision • Automatic load balancing • Automatic resource management • Scale with little / no system modification
What do we have now? • Erlang VM & OTP
• Docker, Kubernetes
Erlang VM & OTP node 1 erlang vm erlang processes
node 2 erlang vm erlang processes
Erlang VM & OTP Supervisor Supervisor Worker Worker Worker Worker
Worker OTP Supervision Tree
Erlang VM & OTP • Build in interprocess communication √
• Build in monitoring & supervision √ • Automatic load balancing X • Automatic resource management X • Scale with little / no system modification √
Erlang VM & OTP • The building block is too
low level? (erlang processes) • Your application need to be written in erlang (or other erlang vm languages)
Docker • Like virtual machine, but much lighter • Encapsulate
our application into single “executable” • Remove dependencies, development vs production headache
Docker Host OS Docker Container Container Container Server
Kubernetes • Manages & monitors containers • Resource allocation between
containers
Kubernetes Host OS Docker Container Container Pod Host OS Docker
Container Container Pod Node 1 Node 2 Kubernetes
Docker & Kubernetes • Build in interprocess communication X •
Build in monitoring & supervision √ • Automatic load balancing √ • Automatic resource management √ • Scale with little / no system modification X
Docker & Kubernetes • No build in interprocess communication •
Still have to modify the system (split into smaller services) • Too complicated
Can we do better?
Let’s zoom out a bit • Service vs Process •
Node vs Core They’re conceptually the same
Maybe we can push down the abstraction layer?
What if, our “Cluster operating system” is a real Operating
System?
We need a real “Distributed Operating System”
Distributed Operating System Operating System Application Hardware Hardware Hardware
Distributed Operating System • Encapsulate multiple machines as a single
node • Transparent from user / application point of view • Handle load balancing, replication & distribution automatically • Better yet, if we can add more machine on the fly
Is it possible? I have no idea.
We’ve done something similar • Raid • Multiple disk, single
volume • Transparent from applications • Automatic failure handling & replication
We need Raid for CPU & Memory
Or maybe, we can push it down further, to the
hardware level?
We need a real “Distributed Motherboard” :D
Distributed Operating System Operating System Application Hardware
Distributed Motherboard • Node 1, 32 Cores, 32 GB RAM
• Node 2, 32 Cores, 32 GB RAM • Detected by operating system as 1 Node, 64 Cores, 64 GB RAM
Distributed Motherboard • We can add more node, on the
fly • Motherboard will communicate between each other • Abstract their resources as a SINGLE NODE
Again, is it possible? I have no idea.
We’ve done that too • Hardware Raid Controller • Multiple
Disk, detected as a single hardware • Transparent from operating system & application
Too much wishful thinking?
Why does it matter?
Why does it matter? Scalable & Reliable system is a
SOLVED problem We already have Google, Facebook, etc as a prove
Why does it matter? • Scalable & Reliable system is
not easy & cheap • Need a group of highly skilled experts to build
Case Study: WhatsApp
Case Study: WhatsApp • WhatsApp use Erlang VM & OTP
• They can scale it without adding too much complexity
Case Study: WhatsApp
Case Study: WhatsApp We need more companies like WhatsApp
Small Startups? Can 4-fresh-graduate startup create a product used by
a billion users?
Non profits? Can we create non profit system than serve
billons of users?
./bukalapak
more research on this, please :)
Thank you