Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kibana入門
Search
Yusuke Mito
November 12, 2013
Technology
62
51k
Kibana入門
第2回elasticsearch勉強会の発表資料です。
Kibanaの基本的な使い方について網羅的にまとめました。
Yusuke Mito
November 12, 2013
Tweet
Share
More Decks by Yusuke Mito
See All by Yusuke Mito
マイクロサービス環境における監視の効率化
y310
0
1.4k
GraphQL Q&A
y310
7
3.7k
Ruby on Rails Introduction
y310
0
270
WWDC2014 これだけ押さえておけば間違いなし! おすすめセッションTOP10
y310
11
5.4k
NSUserDefaultsの中身を見る
y310
0
2.2k
xctoolで爆速テスト
y310
2
1.6k
Other Decks in Technology
See All in Technology
Culture Deck
optfit
0
460
ハッキングの世界に迫る~攻撃者の思考で考えるセキュリティ~
nomizone
13
5.6k
Classmethod AI Talks(CATs) #17 司会進行スライド(2025.02.19) / classmethod-ai-talks-aka-cats_moderator-slides_vol17_2025-02-19
shinyaa31
0
160
明日からできる!技術的負債の返済を加速するための実践ガイド~『ホットペッパービューティー』の事例をもとに~
recruitengineers
PRO
3
500
Active Directory攻防
cryptopeg
PRO
7
4.3k
人はなぜISUCONに夢中になるのか
kakehashi
PRO
6
1.7k
Raycast AI APIを使ってちょっと便利な拡張機能を作ってみた / created-a-handy-extension-using-the-raycast-ai-api
kawamataryo
0
150
生成 AI プロダクトを育てる技術 〜データ品質向上による継続的な価値創出の実践〜
icoxfog417
PRO
5
1.8k
OpenID BizDay#17 KYC WG活動報告(法人) / 20250219-BizDay17-KYC-legalidentity
oidfj
0
290
データマネジメントのトレードオフに立ち向かう
ikkimiyazaki
6
1.2k
ユーザーストーリーマッピングから始めるアジャイルチームと並走するQA / Starting QA with User Story Mapping
katawara
0
250
Building Products in the LLM Era
ymatsuwitter
10
6.1k
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
80
8.8k
Music & Morning Musume
bryan
46
6.3k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
How GitHub (no longer) Works
holman
314
140k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
560
Rails Girls Zürich Keynote
gr2m
94
13k
Gamification - CAS2011
davidbonilla
80
5.1k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Automating Front-end Workflow
addyosmani
1368
200k
Transcript
,JCBOBೖ ਫށ༞հ!Z@
୭ʁ
! ਫށ༞հ.JUP:VTVLF $00,1"%גࣜձٕࣾज़෦ ΞϓϦέʔγϣϯΤϯδχΞ ҎલαʔϏε։ൃɺ࠷ۙ3&45"1*ͷ։ൃͳͲ Z !Z@
,JCBOB
ࠓͷ͓ wͳͥ,JCBOBʁ w,JCBOBͷ͍ํ w,JCBOB5JQT
ࠓͷ͓ wͳͥ,JCBOBʁ w,JCBOBͷ͍ํ w,JCBOB5JQT
·ͣجຊใ͔Β
,JCBOBͱʁ w ϩάղੳՄࢹԽπʔϧ w MPHTUBTIͰूΊͨϩάΛՄࢹԽ͢ΔͨΊʹ࡞ΒΕͨ w ʹ&MBTUJDTFBSDIͷެࣜπʔϧԽ w IUUQTHJUIVCDPNFMBTUJDTFBSDILJCBOB w
MPHTUBTIͷґଘͳ͘ɺqVFOUEͳͲ؆୯ʹ࿈ܞՄೳ
ߏ &MBTUJDTFBSDI ,JCBOB MPHTUBTI qVFOUE
ಛ w,JCBOBࣗମ)5.-$44+4ͷΈ wͭ·Γ8FCαʔό͚ͩͰ৴Մೳ XHFUIUUQEPXOMPBEFMBTUJDTFBSDIPSHLJCBOBLJCBOBLJCBOBMBUFTU[JQ VO[JQLJCBOBMBUFTU[JQ SVCZSTJOBUSBFTFUQVCMJD@EJS lLJCBOBMBUFTU
ಛ ύωϧΛՃͯ͠ ΈͷμογϡϘʔυΛ࡞ΕΔ
ಛ w࡞ͬͨμογϡϘʔυ FMBTUJDTFBSDIʹอଘ wετϨʔδෆཁ
,JCBOBΛ͏ཧ༝
ϩάΛݟΔͱ͖ʹ Α͋͘Δ͜ͱ
ຖճݟ͍͕ͨ݅มΘΔ ͋ΔϢʔβͷΞΫηεΛ͍ͨ͠ ͜ͷϖʔδʹΞΫηε͞Εͨճ J04ͱ"OESPJEͷΞΫηεൺ ฏۉϨεϙϯελΠϜ FUDʜ
ૉૣ͘Λݟ͍ͨ ϐʔΫλΠϜԿ࣌ࠒʁ ٳͷτϥϑΟοΫฏʹൺͯͲ͏ʁ Τϥʔى͖͍ͯͳ͍ʁ FUDʜ
Ͱɺৄࡉݟ͍ͨ ͜ͷ࣌ͷΫΤϦύϥϝʔλԿʁ ͜ͷάϥϑͷεύΠΫԿʁ Ͳ͔͜Β͜ͷϖʔδʹདྷͨͷʁ FUDʜ
ݟ͍ͨ࣌ʹ ݟ͍ͨใΛ ૉૣ͘
,JCBOBͳΒશ෦Ͱ͖Δ
ࠓͷ͓ wͳͥ,JCBOBʁ w,JCBOBͷ͍ํ w,JCBOB5JQT
αϯϓϧσʔλ χίχίσʔληοτಈըϝλσʔλ IUUQXXXOJJBDKQDTDFOUFSJESOJDPOJDPIUNM
ఏڙ ג υϫϯΰ ࠃཱใֶݚڀॴ
/BWJHBUJPO 3PX 3PX 1BOFM 1BOFM 1BOFM
2VFSZ ݕࡧΫΤϦΛೖྗ͢ΔҰ൪جຊͱͳΔύωϧ MVDFOFΫΤϦ͕ॻ͚Δ NPWJF@UZQFNQ NPWJF@UZQFqW
'JMUFSJOH ݱࡏͷΫΤϦʹର͔͔͍ͯͬͯ͠ΔߜΓࠐΈ݅Λදࣔ ظؒͷߜΓࠐΈ NPWJF@UZQFͷߜΓࠐΈ
4BWF-PBE FMBTUJDTFBSDIͷLJCBOBJOUΠϯσοΫε͔ΒอଘͱಡΈࠐΈ μογϡϘʔυΛ࡞ͬͨΒϦϩʔυલʹඞͣอଘʂ
)JTUPHSBN ࣌ܥྻσʔλΛදࣔ͢Δ Ұ൪͏͜ͱʹͳΔύωϧ -JOFT #BST 1PJOUT
)JUT ΫΤϦ͝ͱͷ૯ώοτ݅ΛάϥϑԽ
4QBSLMJOFT ΫΤϦ͝ͱͷ͚ͩΛՄࢹԽ IUUQTUXJUUFSDPNSBTIJELQDTUBUVT
5FSNT GBDFUTͷ݁ՌΛ#BS 1JF 5BCMFͰάϥϑԽ ίϝϯτͷGBDFU
5SFOET ࢦఆ͔ͨ࣌͠ΒͷͷมԽΛදࣔ ʮલൺ/૿Ճʯ ʮલൺ.ݮগʯͳͲ
.BQ GBDFUͷ݁ՌΛਤ্ͰՄࢹԽ ຊਤ1VMMSFRVFTUΛग़ͨ͠ͷͷٞதʜ IUUQTHJUIVCDPNFMBTUJDTFBSDILJCBOBQVMM
#FUUFS.BQ ҢɾܦΛݩʹϚοϐϯά
5BCMF ΫΤϦʹϚονͨ͠υΩϡϝϯτͷ༰Λදࣔ
$PMVNO ύωϧΛॎʹฒΒΕΔύωϧ
5FYU )5.- NBSLEPXO QMBJOUFYUͰςΩετΛදࣔ
DEMO
ΫΤϦͷॻ͖ํ
λΠτϧʹʮՎͬͯΈͨʯΛؚΉಈը UJUMFlՎͬͯΈͨz ಈըܗࣜNQҎ֎ͷಈը NPWJF@UZQFNQ ࠶ੜ࣌ؒະຬͷಈը MFOHUI< 50> λΠτϧʹʮՎͬͯΈͨʯΛؚΉNQಈը UJUMFlՎͬͯΈͨz"/%NPWJF@UZQFNQ /05
NPWJF@UZQFNQ ·ͨ ࠶ੜ࣌ؒະຬͷಈը MFOHUI< 50>
ෳͷΫΤϦͷ݁ՌΛൺֱ
ಈըܗࣜͷൺֱ GBDFUͰऔಘͨ͠Ωʔϫʔυ͔Βࣗಈతʹݕࡧ
ಈըϑΝΠϧαΠζͷฏۉ ϑΟʔϧυͷฏۉΛάϥϑԽ ଞʹɺ࠷େɺ࠷খɺ߹ܭܭࢉՄೳ
ࠓͷ͓ wͳͥ,JCBOBʁ w,JCBOBͷ͍ํ w,JCBOB5JQT
JOEFYͱUZQF MPHTUBTI BDDFTT@MPH JOEFY UZQF FWFOU@MPH UZQF MPHTUBTI BDDFTT@MPH JOEFY
UZQF FWFOU@MPH UZQF MPHTUBTI BDDFTT@MPH JOEFY UZQF FWFOU@MPH UZQF ͭͷJOEFYʹҟͳΔεΩʔϚΛ࣋ͭσʔλΛೖΕΒΕΔ ͭͷJOEFYʹೖΕΔ͜ͱͰάϥϑΛॏͶͯൺֱͳͲ͕Ͱ͖Δ
NBQQJOH w NBQQJOHࣗಈతʹఆٛ͞ΕΔ w େ֓ɺͪΐͬͱ͏·͍͔͘ͳ͍ w ܕ͕JOUFHFSͰͳ͘MPOHʹͳΔ w ύεจࣈྻ͕͔ͪॻ͖͞Εͯ͠·͏ w
ͳͲ
{! "template": "logstash-*",! "settings" : {! "number_of_shards" : 1,! "number_of_replicas"
: 0! },! "mappings": {! “access_log": { ! "_source": { "compress": true },! "dynamic_templates": [! {! "string_template" : { ! "match" : "*",! "mapping": { "type": "string", "index": "not_analyzed" },! "match_mapping_type" : "string"! } ! }! ],! "properties" : {! "path" : {! "type": "multi_field",! "fields" : {! "analyzed" : {"type":"string", "index" : "analyzed"},! "no_analyzed": {"type":"string", "index" : "not_analyzed"}! }! },! "agent" : {! "type": "multi_field",! "fields" : {! "analyzed" : {"type":"string", "index" : "analyzed"},! "no_analyzed": {"type":"string", "index" : "not_analyzed"}! }! },! "referer" : {! "type": "multi_field",! "fields" : {! "analyzed" : {"type":"string", "index" : "analyzed"},! "no_analyzed": {"type":"string", "index" : "not_analyzed"}! }! },! "@timestamp" : { "type" : "date", "index" : "not_analyzed" }! }! }! }! } curl -XPUT localhost:9200/_template/logstash_template JOEFYUFNQMBUF MPHTUBTIͰ࢝·ΔJOEFYʹࣗಈతʹద༻ UZQF͕BDDFTT@MPHͷυΩϡϝϯτʹద༻ ͭͷϓϩύςΟΛෳͷpFMEʹల։ ͔ͪॻ͖Λ͠ͳ͍
ੑೳ w &$NMBSHFʷ w ͷΠϯσοΫεαΠζ͕(#Λ͑Δ͋ͨΓͰ FMBTUJDTFBSDI͕٧·Γ࢝ΊΔ w 0VU0G.FNPSZ&SSPSͳͲΛు͍ͯ΄ͱΜͲJNQPSUΛड͚͚ ͳ͘ͳΔ w
qVFOUEʹσʔλ͕ͨ·ΓόοϑΝΦʔόʔͰσʔλΛࣦ͏ʜ
ੑೳ w ͦͷޙɺ+7.ͷ($ύϥϝʔλνϡʔχϯάʹΑΓͳΜͱ͔҆ఆ w ϐʔΫ࣌Ͱ.CQTఔͷτϥϑΟοΫʹ͑ΒΕΔ͜ͱΛ֬ೝ νϡʔχϯάͷৄࡉʹ͍ͭͯ !DPO@NBNFʹฉ͍͍ͯͩ͘͞ ΦϒδΣΫτ͕େྔʹੜɺআ͞ΕΔ͜ͱͰසൟʹ'VMM($͕͍ͬͯͨͷ͕ݪҼ /FXྖҬͷαΠζΛ͛ͯ4DBWFOHF($Ͱճऩ͞ΕΔΑ͏ʹ͢Δ͜ͱͰ'VMM($ͷൃੜ සΛͰ͖Δ͚ͩԼ͛ΔΑ͏ʹͨ͠
࠷৽ใΛ͏ w HJUIVCͷNBTUFShttps://github.com/elasticsearch/kibana w ຖͷΑ͏ʹػೳՃσβΠϯมߋ͕ى͖͍ͯ·͢ w ͨ·ʹͪΐͬͱյΕͯ·͢ w ެࣜCMPHhttp://www.elasticsearch.org/blog/ w
,JCBOBͷهࣄ ϲ݄ʹຊͰ͕͢།Ұͷ৽ػೳհใͰ͢ w EFNPLJCBOBPSHhttp://demo.kibana.org/ w खͬऔΓૣ͘࠷৽൛ΛࢼͤΔ