Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kibana入門
Search
Yusuke Mito
November 12, 2013
Technology
62
51k
Kibana入門
第2回elasticsearch勉強会の発表資料です。
Kibanaの基本的な使い方について網羅的にまとめました。
Yusuke Mito
November 12, 2013
Tweet
Share
More Decks by Yusuke Mito
See All by Yusuke Mito
マイクロサービス環境における監視の効率化
y310
0
1.5k
GraphQL Q&A
y310
7
3.7k
Ruby on Rails Introduction
y310
0
290
WWDC2014 これだけ押さえておけば間違いなし! おすすめセッションTOP10
y310
11
5.5k
NSUserDefaultsの中身を見る
y310
0
2.2k
xctoolで爆速テスト
y310
2
1.6k
Other Decks in Technology
See All in Technology
golang-migrate VS Atlas !? 技術選定のポイントと学び ~DBマイグレーションツール選定の実例を通して~ / golang-migrate vs Atlas ! What is the point of technology selection and what you can learn from the examples of DB migration tool selection?
nttcom
0
110
SONiCにて使用されているSAIの実際
sonic
0
340
技術選定の仕方 - FLEXYウェビナー / How to select technology
shinden
1
120
AIフレンドリーなプロダクト開発を目指して 〜MCPを橋渡しにした環境移行〜
shinpr
0
140
Developer 以外にこそ使って欲しい Amazon Q Developer
mita
0
190
SRE/インフラエンジニアの市場価値とキャリアパス/Market value and career path for SRE-infrastructure engineers
takumakume
1
220
スイッチのBMC、つかってますか?
sonic
0
490
【Gen-AX】20250514開催_Findyオンラインイベント_技術選定を突き詰める
genax
0
130
Next.jsと状態管理のプラクティス
uhyo
6
2.4k
ユーザーコミュニティが海外スタートアップのDevRelを補完する瞬間
nagauta
1
210
チェックツールを導入したけど使ってもらえなかった話 #GAADjp
lycorptech_jp
PRO
1
150
20250514 1Passwordを使い倒す道場 vol.1
east_takumi
0
160
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Being A Developer After 40
akosma
91
590k
Scaling GitHub
holman
459
140k
Building Adaptive Systems
keathley
41
2.5k
Embracing the Ebb and Flow
colly
85
4.7k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
810
Building an army of robots
kneath
305
45k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
Building Applications with DynamoDB
mza
94
6.4k
Into the Great Unknown - MozCon
thekraken
38
1.8k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
Transcript
,JCBOBೖ ਫށ༞հ!Z@
୭ʁ
! ਫށ༞հ.JUP:VTVLF $00,1"%גࣜձٕࣾज़෦ ΞϓϦέʔγϣϯΤϯδχΞ ҎલαʔϏε։ൃɺ࠷ۙ3&45"1*ͷ։ൃͳͲ Z !Z@
,JCBOB
ࠓͷ͓ wͳͥ,JCBOBʁ w,JCBOBͷ͍ํ w,JCBOB5JQT
ࠓͷ͓ wͳͥ,JCBOBʁ w,JCBOBͷ͍ํ w,JCBOB5JQT
·ͣجຊใ͔Β
,JCBOBͱʁ w ϩάղੳՄࢹԽπʔϧ w MPHTUBTIͰूΊͨϩάΛՄࢹԽ͢ΔͨΊʹ࡞ΒΕͨ w ʹ&MBTUJDTFBSDIͷެࣜπʔϧԽ w IUUQTHJUIVCDPNFMBTUJDTFBSDILJCBOB w
MPHTUBTIͷґଘͳ͘ɺqVFOUEͳͲ؆୯ʹ࿈ܞՄೳ
ߏ &MBTUJDTFBSDI ,JCBOB MPHTUBTI qVFOUE
ಛ w,JCBOBࣗମ)5.-$44+4ͷΈ wͭ·Γ8FCαʔό͚ͩͰ৴Մೳ XHFUIUUQEPXOMPBEFMBTUJDTFBSDIPSHLJCBOBLJCBOBLJCBOBMBUFTU[JQ VO[JQLJCBOBMBUFTU[JQ SVCZSTJOBUSBFTFUQVCMJD@EJS lLJCBOBMBUFTU
ಛ ύωϧΛՃͯ͠ ΈͷμογϡϘʔυΛ࡞ΕΔ
ಛ w࡞ͬͨμογϡϘʔυ FMBTUJDTFBSDIʹอଘ wετϨʔδෆཁ
,JCBOBΛ͏ཧ༝
ϩάΛݟΔͱ͖ʹ Α͋͘Δ͜ͱ
ຖճݟ͍͕ͨ݅มΘΔ ͋ΔϢʔβͷΞΫηεΛ͍ͨ͠ ͜ͷϖʔδʹΞΫηε͞Εͨճ J04ͱ"OESPJEͷΞΫηεൺ ฏۉϨεϙϯελΠϜ FUDʜ
ૉૣ͘Λݟ͍ͨ ϐʔΫλΠϜԿ࣌ࠒʁ ٳͷτϥϑΟοΫฏʹൺͯͲ͏ʁ Τϥʔى͖͍ͯͳ͍ʁ FUDʜ
Ͱɺৄࡉݟ͍ͨ ͜ͷ࣌ͷΫΤϦύϥϝʔλԿʁ ͜ͷάϥϑͷεύΠΫԿʁ Ͳ͔͜Β͜ͷϖʔδʹདྷͨͷʁ FUDʜ
ݟ͍ͨ࣌ʹ ݟ͍ͨใΛ ૉૣ͘
,JCBOBͳΒશ෦Ͱ͖Δ
ࠓͷ͓ wͳͥ,JCBOBʁ w,JCBOBͷ͍ํ w,JCBOB5JQT
αϯϓϧσʔλ χίχίσʔληοτಈըϝλσʔλ IUUQXXXOJJBDKQDTDFOUFSJESOJDPOJDPIUNM
ఏڙ ג υϫϯΰ ࠃཱใֶݚڀॴ
/BWJHBUJPO 3PX 3PX 1BOFM 1BOFM 1BOFM
2VFSZ ݕࡧΫΤϦΛೖྗ͢ΔҰ൪جຊͱͳΔύωϧ MVDFOFΫΤϦ͕ॻ͚Δ NPWJF@UZQFNQ NPWJF@UZQFqW
'JMUFSJOH ݱࡏͷΫΤϦʹର͔͔͍ͯͬͯ͠ΔߜΓࠐΈ݅Λදࣔ ظؒͷߜΓࠐΈ NPWJF@UZQFͷߜΓࠐΈ
4BWF-PBE FMBTUJDTFBSDIͷLJCBOBJOUΠϯσοΫε͔ΒอଘͱಡΈࠐΈ μογϡϘʔυΛ࡞ͬͨΒϦϩʔυલʹඞͣอଘʂ
)JTUPHSBN ࣌ܥྻσʔλΛදࣔ͢Δ Ұ൪͏͜ͱʹͳΔύωϧ -JOFT #BST 1PJOUT
)JUT ΫΤϦ͝ͱͷ૯ώοτ݅ΛάϥϑԽ
4QBSLMJOFT ΫΤϦ͝ͱͷ͚ͩΛՄࢹԽ IUUQTUXJUUFSDPNSBTIJELQDTUBUVT
5FSNT GBDFUTͷ݁ՌΛ#BS 1JF 5BCMFͰάϥϑԽ ίϝϯτͷGBDFU
5SFOET ࢦఆ͔ͨ࣌͠ΒͷͷมԽΛදࣔ ʮલൺ/૿Ճʯ ʮલൺ.ݮগʯͳͲ
.BQ GBDFUͷ݁ՌΛਤ্ͰՄࢹԽ ຊਤ1VMMSFRVFTUΛग़ͨ͠ͷͷٞதʜ IUUQTHJUIVCDPNFMBTUJDTFBSDILJCBOBQVMM
#FUUFS.BQ ҢɾܦΛݩʹϚοϐϯά
5BCMF ΫΤϦʹϚονͨ͠υΩϡϝϯτͷ༰Λදࣔ
$PMVNO ύωϧΛॎʹฒΒΕΔύωϧ
5FYU )5.- NBSLEPXO QMBJOUFYUͰςΩετΛදࣔ
DEMO
ΫΤϦͷॻ͖ํ
λΠτϧʹʮՎͬͯΈͨʯΛؚΉಈը UJUMFlՎͬͯΈͨz ಈըܗࣜNQҎ֎ͷಈը NPWJF@UZQFNQ ࠶ੜ࣌ؒະຬͷಈը MFOHUI< 50> λΠτϧʹʮՎͬͯΈͨʯΛؚΉNQಈը UJUMFlՎͬͯΈͨz"/%NPWJF@UZQFNQ /05
NPWJF@UZQFNQ ·ͨ ࠶ੜ࣌ؒະຬͷಈը MFOHUI< 50>
ෳͷΫΤϦͷ݁ՌΛൺֱ
ಈըܗࣜͷൺֱ GBDFUͰऔಘͨ͠Ωʔϫʔυ͔Βࣗಈతʹݕࡧ
ಈըϑΝΠϧαΠζͷฏۉ ϑΟʔϧυͷฏۉΛάϥϑԽ ଞʹɺ࠷େɺ࠷খɺ߹ܭܭࢉՄೳ
ࠓͷ͓ wͳͥ,JCBOBʁ w,JCBOBͷ͍ํ w,JCBOB5JQT
JOEFYͱUZQF MPHTUBTI BDDFTT@MPH JOEFY UZQF FWFOU@MPH UZQF MPHTUBTI BDDFTT@MPH JOEFY
UZQF FWFOU@MPH UZQF MPHTUBTI BDDFTT@MPH JOEFY UZQF FWFOU@MPH UZQF ͭͷJOEFYʹҟͳΔεΩʔϚΛ࣋ͭσʔλΛೖΕΒΕΔ ͭͷJOEFYʹೖΕΔ͜ͱͰάϥϑΛॏͶͯൺֱͳͲ͕Ͱ͖Δ
NBQQJOH w NBQQJOHࣗಈతʹఆٛ͞ΕΔ w େ֓ɺͪΐͬͱ͏·͍͔͘ͳ͍ w ܕ͕JOUFHFSͰͳ͘MPOHʹͳΔ w ύεจࣈྻ͕͔ͪॻ͖͞Εͯ͠·͏ w
ͳͲ
{! "template": "logstash-*",! "settings" : {! "number_of_shards" : 1,! "number_of_replicas"
: 0! },! "mappings": {! “access_log": { ! "_source": { "compress": true },! "dynamic_templates": [! {! "string_template" : { ! "match" : "*",! "mapping": { "type": "string", "index": "not_analyzed" },! "match_mapping_type" : "string"! } ! }! ],! "properties" : {! "path" : {! "type": "multi_field",! "fields" : {! "analyzed" : {"type":"string", "index" : "analyzed"},! "no_analyzed": {"type":"string", "index" : "not_analyzed"}! }! },! "agent" : {! "type": "multi_field",! "fields" : {! "analyzed" : {"type":"string", "index" : "analyzed"},! "no_analyzed": {"type":"string", "index" : "not_analyzed"}! }! },! "referer" : {! "type": "multi_field",! "fields" : {! "analyzed" : {"type":"string", "index" : "analyzed"},! "no_analyzed": {"type":"string", "index" : "not_analyzed"}! }! },! "@timestamp" : { "type" : "date", "index" : "not_analyzed" }! }! }! }! } curl -XPUT localhost:9200/_template/logstash_template JOEFYUFNQMBUF MPHTUBTIͰ࢝·ΔJOEFYʹࣗಈతʹద༻ UZQF͕BDDFTT@MPHͷυΩϡϝϯτʹద༻ ͭͷϓϩύςΟΛෳͷpFMEʹల։ ͔ͪॻ͖Λ͠ͳ͍
ੑೳ w &$NMBSHFʷ w ͷΠϯσοΫεαΠζ͕(#Λ͑Δ͋ͨΓͰ FMBTUJDTFBSDI͕٧·Γ࢝ΊΔ w 0VU0G.FNPSZ&SSPSͳͲΛు͍ͯ΄ͱΜͲJNQPSUΛड͚͚ ͳ͘ͳΔ w
qVFOUEʹσʔλ͕ͨ·ΓόοϑΝΦʔόʔͰσʔλΛࣦ͏ʜ
ੑೳ w ͦͷޙɺ+7.ͷ($ύϥϝʔλνϡʔχϯάʹΑΓͳΜͱ͔҆ఆ w ϐʔΫ࣌Ͱ.CQTఔͷτϥϑΟοΫʹ͑ΒΕΔ͜ͱΛ֬ೝ νϡʔχϯάͷৄࡉʹ͍ͭͯ !DPO@NBNFʹฉ͍͍ͯͩ͘͞ ΦϒδΣΫτ͕େྔʹੜɺআ͞ΕΔ͜ͱͰසൟʹ'VMM($͕͍ͬͯͨͷ͕ݪҼ /FXྖҬͷαΠζΛ͛ͯ4DBWFOHF($Ͱճऩ͞ΕΔΑ͏ʹ͢Δ͜ͱͰ'VMM($ͷൃੜ සΛͰ͖Δ͚ͩԼ͛ΔΑ͏ʹͨ͠
࠷৽ใΛ͏ w HJUIVCͷNBTUFShttps://github.com/elasticsearch/kibana w ຖͷΑ͏ʹػೳՃσβΠϯมߋ͕ى͖͍ͯ·͢ w ͨ·ʹͪΐͬͱյΕͯ·͢ w ެࣜCMPHhttp://www.elasticsearch.org/blog/ w
,JCBOBͷهࣄ ϲ݄ʹຊͰ͕͢།Ұͷ৽ػೳհใͰ͢ w EFNPLJCBOBPSHhttp://demo.kibana.org/ w खͬऔΓૣ͘࠷৽൛ΛࢼͤΔ