Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
金研究室 勉強会 『U-Net: Convolutional Networks for Bio...
Search
winnie279
June 20, 2021
Science
0
220
金研究室 勉強会 『U-Net: Convolutional Networks for Biomedical Image Segmentation』
U-Net: Convolutional Networks for Biomedical Image Segmentation, Olaf Ronneberger, et al., 2015
winnie279
June 20, 2021
Tweet
Share
More Decks by winnie279
See All by winnie279
NowWay:訪⽇外国⼈旅⾏者向けの災害⽀援サービス
yjn279
0
12
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
68
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
73
5分で学ぶOpenAI APIハンズオン
yjn279
0
220
『確率思考の戦略論』
yjn279
0
150
Amazonまでのレコメンド入門
yjn279
1
180
もう一度理解するTransformer(後編)
yjn279
0
85
金研究室 勉強会 『もう一度理解する Transformer(前編)』
yjn279
0
120
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
860
Other Decks in Science
See All in Science
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
150
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
1.5k
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
930
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
350
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
26k
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
520
生成検索エンジン最適化に関する研究の紹介
ynakano
2
2k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
0
140
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
180
Distributional Regression
tackyas
0
300
Featured
See All Featured
The Mindset for Success: Future Career Progression
greggifford
PRO
0
220
Visualization
eitanlees
150
17k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.9k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
420
Code Review Best Practice
trishagee
74
20k
Building an army of robots
kneath
306
46k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
Google's AI Overviews - The New Search
badams
0
900
GraphQLとの向き合い方2022年版
quramy
50
14k
Test your architecture with Archunit
thirion
1
2.1k
Transcript
U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, et
al., 2015 金研 機械学習勉強会 2021/06/20 中村勇士
画像認識の流れ • 画像分類 ◦ CNN • 物体検出 ◦ R-CNN ◦
YOLO ◦ SSD • セグメンテーション ◦ FCN: 完全畳み込みネットワーク → 領域検出 ◦ SegNet: Encoder-Decoder → メモリ効率の上昇 ◦ U-Net: Skip Connection → 境界検出の精度向上 ReNom NegativeMindException
U-Netとは? • 生命科学分野における細胞の セグメンテーション ◦ 細胞の画像認識の大会で好成績 • U字型のアーキテクチャ ◦ 完全畳み込みネットワーク
◦ Encoder-Decoder ◦ Skip Connection:ぼやけた輪郭を修正 • 学習・判別 ◦ 少ない画像でも学習可能 ◦ 学習が高速 ◦ 高精度のセグメンテーション
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト
畳み込み • 性質 ◦ 特徴量抽出 ◦ 位置情報の保存 → 頑強性 •
パラメータ ◦ フィルター → 学習による最適化 ◦ ストライド NHN TECHORUS Tech Blog MathWorks MathWorks 農学情報科学 filter = (3 × 3) stride = 2 filter = (3 × 3) stride = 1
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが一回り小さくなる • フィルタの数 = 特徴量の種類 ◦ 1階層は × 64 ◦ それ以降は × 2
プーリング • 性質 ◦ データの圧縮 → 計算量削減, 過学習抑制 ◦ 位置情報の保存
→ 頑強性 • パラメータ ◦ フィルター ◦ ストライド ◦ 計算方法 ▪ 最大値:Maxプーリング ▪ 平均値:Averageプーリング MathWorks filter = (3 × 3) stride = 1 filter = (3 × 3) stride = 2
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが ½ × ½ = ¼ になる
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが一回り小さくなる • 畳み込みフィルタは前の階層の倍 ◦ フィルタの数 = 特徴量の種類の数
逆畳み込み • Up Conv., Transposed Conv., Deconvolution • 性質 ◦
データの拡大 → 入力サイズに復元 ◦ 位置情報の保存 → 頑強性 • パラメータ ◦ フィルター → 学習による最適化 ◦ ストライド MathWorks filter = (3 × 3) stride = 2 filter = (3 × 3) stride = 1
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが 2 × 2 = 4 になる
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • Encodrの出力 → そのままDecoderへ ◦ 位置に対する頑強性の獲得
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 分類するクラスの分フィルタをかける ◦ それぞれのフィルタに確率を出力
結果