Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
金研究室 勉強会 『U-Net: Convolutional Networks for Bio...
Search
winnie279
June 20, 2021
Science
0
160
金研究室 勉強会 『U-Net: Convolutional Networks for Biomedical Image Segmentation』
U-Net: Convolutional Networks for Biomedical Image Segmentation, Olaf Ronneberger, et al., 2015
winnie279
June 20, 2021
Tweet
Share
More Decks by winnie279
See All by winnie279
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
60
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
67
5分で学ぶOpenAI APIハンズオン
yjn279
0
200
『確率思考の戦略論』
yjn279
0
140
Amazonまでのレコメンド入門
yjn279
1
160
もう一度理解するTransformer(後編)
yjn279
0
79
金研究室 勉強会 『もう一度理解する Transformer(前編)』
yjn279
0
100
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
660
金研究室 勉強会 『Seismic Data Augmentation Based on Conditional Generative Adversarial Networks』
yjn279
0
96
Other Decks in Science
See All in Science
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1.3k
サイゼミ用因果推論
lw
1
7.5k
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
0
120
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
600
mathematics of indirect reciprocity
yohm
1
180
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
170
Accelerated Computing for Climate forecast
inureyes
PRO
0
120
科学で迫る勝敗の法則(電気学会・SICE若手セミナー講演 2024年12月) / The principle of victory discovered by science (Lecture for young academists in IEEJ-SICE))
konakalab
0
130
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
110
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
250
機械学習 - pandas入門
trycycle
PRO
0
310
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
440
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
696
190k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
Building Adaptive Systems
keathley
43
2.7k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Site-Speed That Sticks
csswizardry
10
810
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Documentation Writing (for coders)
carmenintech
74
5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, et
al., 2015 金研 機械学習勉強会 2021/06/20 中村勇士
画像認識の流れ • 画像分類 ◦ CNN • 物体検出 ◦ R-CNN ◦
YOLO ◦ SSD • セグメンテーション ◦ FCN: 完全畳み込みネットワーク → 領域検出 ◦ SegNet: Encoder-Decoder → メモリ効率の上昇 ◦ U-Net: Skip Connection → 境界検出の精度向上 ReNom NegativeMindException
U-Netとは? • 生命科学分野における細胞の セグメンテーション ◦ 細胞の画像認識の大会で好成績 • U字型のアーキテクチャ ◦ 完全畳み込みネットワーク
◦ Encoder-Decoder ◦ Skip Connection:ぼやけた輪郭を修正 • 学習・判別 ◦ 少ない画像でも学習可能 ◦ 学習が高速 ◦ 高精度のセグメンテーション
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト
畳み込み • 性質 ◦ 特徴量抽出 ◦ 位置情報の保存 → 頑強性 •
パラメータ ◦ フィルター → 学習による最適化 ◦ ストライド NHN TECHORUS Tech Blog MathWorks MathWorks 農学情報科学 filter = (3 × 3) stride = 2 filter = (3 × 3) stride = 1
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが一回り小さくなる • フィルタの数 = 特徴量の種類 ◦ 1階層は × 64 ◦ それ以降は × 2
プーリング • 性質 ◦ データの圧縮 → 計算量削減, 過学習抑制 ◦ 位置情報の保存
→ 頑強性 • パラメータ ◦ フィルター ◦ ストライド ◦ 計算方法 ▪ 最大値:Maxプーリング ▪ 平均値:Averageプーリング MathWorks filter = (3 × 3) stride = 1 filter = (3 × 3) stride = 2
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが ½ × ½ = ¼ になる
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが一回り小さくなる • 畳み込みフィルタは前の階層の倍 ◦ フィルタの数 = 特徴量の種類の数
逆畳み込み • Up Conv., Transposed Conv., Deconvolution • 性質 ◦
データの拡大 → 入力サイズに復元 ◦ 位置情報の保存 → 頑強性 • パラメータ ◦ フィルター → 学習による最適化 ◦ ストライド MathWorks filter = (3 × 3) stride = 2 filter = (3 × 3) stride = 1
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが 2 × 2 = 4 になる
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • Encodrの出力 → そのままDecoderへ ◦ 位置に対する頑強性の獲得
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 分類するクラスの分フィルタをかける ◦ それぞれのフィルタに確率を出力
結果