Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
金研究室 勉強会 『U-Net: Convolutional Networks for Bio...
Search
winnie279
June 20, 2021
Science
0
230
金研究室 勉強会 『U-Net: Convolutional Networks for Biomedical Image Segmentation』
U-Net: Convolutional Networks for Biomedical Image Segmentation, Olaf Ronneberger, et al., 2015
winnie279
June 20, 2021
Tweet
Share
More Decks by winnie279
See All by winnie279
NowWay:訪⽇外国⼈旅⾏者向けの災害⽀援サービス
yjn279
0
14
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
69
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
73
5分で学ぶOpenAI APIハンズオン
yjn279
0
220
『確率思考の戦略論』
yjn279
0
150
Amazonまでのレコメンド入門
yjn279
1
180
もう一度理解するTransformer(後編)
yjn279
0
87
金研究室 勉強会 『もう一度理解する Transformer(前編)』
yjn279
0
120
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
890
Other Decks in Science
See All in Science
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
130
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.5k
データマイニング - コミュニティ発見
trycycle
PRO
0
210
Navigating Weather and Climate Data
rabernat
0
110
機械学習 - SVM
trycycle
PRO
1
980
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
PRO
0
190
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
6
21k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
1
230
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
32k
2025-06-11-ai_belgium
sofievl
1
230
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
160
生成検索エンジン最適化に関する研究の紹介
ynakano
2
2k
Featured
See All Featured
The Invisible Side of Design
smashingmag
302
51k
Become a Pro
speakerdeck
PRO
31
5.8k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
Navigating Weather and Climate Data
rabernat
0
110
Un-Boring Meetings
codingconduct
0
200
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
Transcript
U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, et
al., 2015 金研 機械学習勉強会 2021/06/20 中村勇士
画像認識の流れ • 画像分類 ◦ CNN • 物体検出 ◦ R-CNN ◦
YOLO ◦ SSD • セグメンテーション ◦ FCN: 完全畳み込みネットワーク → 領域検出 ◦ SegNet: Encoder-Decoder → メモリ効率の上昇 ◦ U-Net: Skip Connection → 境界検出の精度向上 ReNom NegativeMindException
U-Netとは? • 生命科学分野における細胞の セグメンテーション ◦ 細胞の画像認識の大会で好成績 • U字型のアーキテクチャ ◦ 完全畳み込みネットワーク
◦ Encoder-Decoder ◦ Skip Connection:ぼやけた輪郭を修正 • 学習・判別 ◦ 少ない画像でも学習可能 ◦ 学習が高速 ◦ 高精度のセグメンテーション
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト
畳み込み • 性質 ◦ 特徴量抽出 ◦ 位置情報の保存 → 頑強性 •
パラメータ ◦ フィルター → 学習による最適化 ◦ ストライド NHN TECHORUS Tech Blog MathWorks MathWorks 農学情報科学 filter = (3 × 3) stride = 2 filter = (3 × 3) stride = 1
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが一回り小さくなる • フィルタの数 = 特徴量の種類 ◦ 1階層は × 64 ◦ それ以降は × 2
プーリング • 性質 ◦ データの圧縮 → 計算量削減, 過学習抑制 ◦ 位置情報の保存
→ 頑強性 • パラメータ ◦ フィルター ◦ ストライド ◦ 計算方法 ▪ 最大値:Maxプーリング ▪ 平均値:Averageプーリング MathWorks filter = (3 × 3) stride = 1 filter = (3 × 3) stride = 2
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが ½ × ½ = ¼ になる
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが一回り小さくなる • 畳み込みフィルタは前の階層の倍 ◦ フィルタの数 = 特徴量の種類の数
逆畳み込み • Up Conv., Transposed Conv., Deconvolution • 性質 ◦
データの拡大 → 入力サイズに復元 ◦ 位置情報の保存 → 頑強性 • パラメータ ◦ フィルター → 学習による最適化 ◦ ストライド MathWorks filter = (3 × 3) stride = 2 filter = (3 × 3) stride = 1
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 画像サイズが 2 × 2 = 4 になる
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • Encodrの出力 → そのままDecoderへ ◦ 位置に対する頑強性の獲得
モデル • Encoder(ダウンサンプリング) ◦ 畳み込み ◦ MAXプーリング • Decoder(アップサンプリング) ◦
畳み込み ◦ 逆畳み込み ◦ スキップコネクション ◦ 畳み込み • 学習 ◦ 出力:ソフトマックス関数 ◦ 損失関数:交差エントロピー誤差 ◦ 最適化:SGD ◦ データ拡張:変形, シフト, 回転, ドロップアウト • 分類するクラスの分フィルタをかける ◦ それぞれのフィルタに確率を出力
結果