Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
金研究室 勉強会 『もう一度理解する Transformer(前編)』
Search
winnie279
July 12, 2022
Science
0
110
金研究室 勉強会 『もう一度理解する Transformer(前編)』
もう一度理解するTransformer(前編), 中村勇士, 2022
winnie279
July 12, 2022
Tweet
Share
More Decks by winnie279
See All by winnie279
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
62
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
68
5分で学ぶOpenAI APIハンズオン
yjn279
0
210
『確率思考の戦略論』
yjn279
0
140
Amazonまでのレコメンド入門
yjn279
1
170
もう一度理解するTransformer(後編)
yjn279
0
79
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
760
金研究室 勉強会 『Seismic Data Augmentation Based on Conditional Generative Adversarial Networks』
yjn279
0
100
金研究室 勉強会 『バックプロパゲーションと勾配消失問題』
yjn279
0
450
Other Decks in Science
See All in Science
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
380
Lean4による汎化誤差評価の形式化
milano0017
1
370
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
510
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
190
Vibecoding for Product Managers
ibknadedeji
0
110
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
420
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1k
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
120
Transport information Geometry: Current and Future II
lwc2017
0
220
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Rails Girls Zürich Keynote
gr2m
95
14k
Optimizing for Happiness
mojombo
379
70k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
A Tale of Four Properties
chriscoyier
162
23k
Building Applications with DynamoDB
mza
96
6.8k
Unsuck your backbone
ammeep
671
58k
The Pragmatic Product Professional
lauravandoore
36
7k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
Transcript
もう一度理解する Transformer(前編) 金研 機械学習勉強会 2022/07/12 中村勇士
もう一度とは? • 『Attention is all you need』読みました ◦ 見返してみたら、約1年前でした(見たい方は こちら)
◦ 難しくてなかなか理解できず → リベンジします • Transformerとは? ◦ 2017年の自然言語処理モデル ◦ 高性能、様々な分野で使われる ・BERT → Google 翻訳 ・GPT-3 → 1ヶ月間ブログを書いたのに AIだと気づかれず ・ViT → 画像認識
Transformerまでの道のり • なぜ難しかったのか? ◦ 基本的にAttentionを知らなかった ◦ ほかの文章生成モデルを知らなかった • どうすれば良いか? ◦
まずは基本的なAttentionを理解する! ◦ ほかの文章生成モデルを知る! • RNN • Bi-RNN • Encoder-Decoder • Attention • Transformer • BERT or GPT-3 or ViT 機械学習勉強会で 出てきた 前半 RNNを不使用 後半以降 RNNを不使用
seq2seq(sequence to sequence) • 文章とは? ◦ 単語や句読点などの記号を順に並べたもの ◦ 時系列データの1つ →
地震波形・音波・株価など • 文章生成モデル ◦ 系列データから系列データへ ◦ ある文章から別の文章を生成(翻訳など) ◦ リアルタイム震度予測 • 文字をどうやって入力するの? ◦ 単語をベクトルに変換する ◦ IDを振るようなイメージ this is . a pen これ は ペン です 。 ID 単語 ベクトル 1 りんご [0, 0, 0, 1] 2 みかん [0, 0, 1, 0] …… …… …… 7 ばなな [0, 1, 1, 0] …… …… ……
• 前後の情報を持てる • 文字の説明 ◦ x:入力データ ◦ h:隠れ状態 ◦ W,
U:重み ◦ b:バイアス Bi-RNN(Bidirectional RNN) this h s is . a pen これ は ペン です 。 結合 以降の情報
• 文脈ベクトル(context vector)をもつ • 入力と出力を異なる長さにできる • 文字の説明 ◦ h:隠れ状態 ◦
y:出力 ◦ c:文脈ベクトル Encoder-Decoder this h t is . a pen <bos> これ は は これ 文脈ベクトル 1つ前の出力 隠れ状態
• 単語間の関係性に「注目」できる • 文脈ベクトルが可変長 ◦ 長い文章でも情報が失われない ◦ 時系列情報を取り込みやすい • 文字の説明
◦ h~ t :Attention適用後の隠れ層 ◦ h t :隠れ層 ◦ c :文脈ベクトル ◦ b :バイアス Attention this h s h t h~ t c is . a pen <bos> これ は は
• 単語間の関係性に「注目」できる • 文脈ベクトルが可変長 ◦ 長い文章でも情報が失われない ◦ 時系列情報を取り込みやすい • 文字の説明
◦ t :出力の時刻 ◦ τ :入力の時刻 ◦ h s :エンコーダの隠れ層 ◦ c :文脈ベクトル ◦ a :重み attention weights Attention this h s h t h~ t c a is . a pen <bos> これ は は Attention
• 単語間の関係性に「注目」できる • 文脈ベクトルが可変長 ◦ 長い文章でも情報が失われない ◦ 時系列情報を取り込みやすい • 文字の説明
◦ t :出力の時刻 ◦ τ :入力の時刻 ◦ h s :エンコーダの隠れ層 ◦ h t :エンコーダの隠れ層 ◦ a :重み Attention this h s h t h~ t c a is . a pen <bos> これ は は Attention
• 単語間の関係性に「注目」できる • 文脈ベクトルが可変長 ◦ 長い文章でも情報が失われない ◦ 時系列情報を取り込みやすい • まとめ
◦ AttentionはEncoder-Decoderに c(t)を加えたもの ◦ cは単語と単語の関係性から 文脈ベクトルを合成する Attention this h s h t h~ t c a is . a pen <bos> これ は は Attention
まとめ • Attentionまでのseq2seq ◦ 初期段階からRNNが利用されている → ただし並列計算はできない ◦ 文章全体の意味を持つ文脈ベクトルが使われている ◦
単語間の関係性に注目する Attentionが導入された • 今後の流れ ◦ 応用的なAttentionの理解 ◦ Transformer全体の理解 ◦ Transformerから派生した モデルの理解 this h s h t h~ t c a is . a pen <bos> これ は は Attention