Upgrade to Pro — share decks privately, control downloads, hide ads and more …

金研究室 勉強会 『もう一度理解する Transformer(前編)』

Avatar for winnie279 winnie279
July 12, 2022

金研究室 勉強会 『もう一度理解する Transformer(前編)』

もう一度理解するTransformer(前編), 中村勇士, 2022

Avatar for winnie279

winnie279

July 12, 2022
Tweet

More Decks by winnie279

Other Decks in Science

Transcript

  1. もう一度とは? • 『Attention is all you need』読みました ◦ 見返してみたら、約1年前でした(見たい方は こちら)

    ◦ 難しくてなかなか理解できず → リベンジします • Transformerとは? ◦ 2017年の自然言語処理モデル ◦ 高性能、様々な分野で使われる ・BERT → Google 翻訳 ・GPT-3 → 1ヶ月間ブログを書いたのに       AIだと気づかれず ・ViT → 画像認識
  2. Transformerまでの道のり • なぜ難しかったのか? ◦ 基本的にAttentionを知らなかった ◦ ほかの文章生成モデルを知らなかった • どうすれば良いか? ◦

    まずは基本的なAttentionを理解する! ◦ ほかの文章生成モデルを知る! • RNN • Bi-RNN • Encoder-Decoder • Attention • Transformer • BERT or GPT-3 or ViT 機械学習勉強会で 出てきた 前半 RNNを不使用 後半以降 RNNを不使用
  3. seq2seq(sequence to sequence) • 文章とは? ◦ 単語や句読点などの記号を順に並べたもの ◦ 時系列データの1つ →

    地震波形・音波・株価など • 文章生成モデル ◦ 系列データから系列データへ ◦ ある文章から別の文章を生成(翻訳など) ◦ リアルタイム震度予測 • 文字をどうやって入力するの? ◦ 単語をベクトルに変換する ◦ IDを振るようなイメージ this is . a pen これ は ペン です 。 ID 単語 ベクトル 1 りんご [0, 0, 0, 1] 2 みかん [0, 0, 1, 0] …… …… …… 7 ばなな [0, 1, 1, 0] …… …… ……
  4. • 前後の情報を持てる • 文字の説明 ◦ x:入力データ ◦ h:隠れ状態 ◦ W,

    U:重み ◦ b:バイアス Bi-RNN(Bidirectional RNN) this h s is . a pen これ は ペン です 。 結合 以降の情報
  5. • 文脈ベクトル(context vector)をもつ • 入力と出力を異なる長さにできる • 文字の説明 ◦ h:隠れ状態 ◦

    y:出力 ◦ c:文脈ベクトル Encoder-Decoder this h t is . a pen <bos> これ は は これ 文脈ベクトル 1つ前の出力 隠れ状態
  6. • 単語間の関係性に「注目」できる • 文脈ベクトルが可変長 ◦ 長い文章でも情報が失われない ◦ 時系列情報を取り込みやすい • 文字の説明

    ◦ h~ t :Attention適用後の隠れ層 ◦ h t :隠れ層 ◦ c :文脈ベクトル ◦ b :バイアス Attention this h s h t h~ t c is . a pen <bos> これ は は
  7. • 単語間の関係性に「注目」できる • 文脈ベクトルが可変長 ◦ 長い文章でも情報が失われない ◦ 時系列情報を取り込みやすい • 文字の説明

    ◦ t :出力の時刻 ◦ τ :入力の時刻 ◦ h s :エンコーダの隠れ層 ◦ c :文脈ベクトル ◦ a :重み   attention weights Attention this h s h t h~ t c a is . a pen <bos> これ は は Attention
  8. • 単語間の関係性に「注目」できる • 文脈ベクトルが可変長 ◦ 長い文章でも情報が失われない ◦ 時系列情報を取り込みやすい • 文字の説明

    ◦ t :出力の時刻 ◦ τ :入力の時刻 ◦ h s :エンコーダの隠れ層 ◦ h t :エンコーダの隠れ層 ◦ a :重み Attention this h s h t h~ t c a is . a pen <bos> これ は は Attention
  9. • 単語間の関係性に「注目」できる • 文脈ベクトルが可変長 ◦ 長い文章でも情報が失われない ◦ 時系列情報を取り込みやすい • まとめ

    ◦ AttentionはEncoder-Decoderに c(t)を加えたもの ◦ cは単語と単語の関係性から 文脈ベクトルを合成する Attention this h s h t h~ t c a is . a pen <bos> これ は は Attention
  10. まとめ • Attentionまでのseq2seq ◦ 初期段階からRNNが利用されている → ただし並列計算はできない ◦ 文章全体の意味を持つ文脈ベクトルが使われている ◦

    単語間の関係性に注目する Attentionが導入された • 今後の流れ ◦ 応用的なAttentionの理解 ◦ Transformer全体の理解 ◦ Transformerから派生した モデルの理解 this h s h t h~ t c a is . a pen <bos> これ は は Attention