Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
もう一度理解するTransformer(後編)
Search
winnie279
September 06, 2022
Science
0
85
もう一度理解するTransformer(後編)
もう一度理解するTransformer(後編), 中村勇士, 2022
winnie279
September 06, 2022
Tweet
Share
More Decks by winnie279
See All by winnie279
NowWay:訪⽇外国⼈旅⾏者向けの災害⽀援サービス
yjn279
0
12
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
68
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
73
5分で学ぶOpenAI APIハンズオン
yjn279
0
220
『確率思考の戦略論』
yjn279
0
150
Amazonまでのレコメンド入門
yjn279
1
180
金研究室 勉強会 『もう一度理解する Transformer(前編)』
yjn279
0
120
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
860
金研究室 勉強会 『Seismic Data Augmentation Based on Conditional Generative Adversarial Networks』
yjn279
0
110
Other Decks in Science
See All in Science
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1.1k
HDC tutorial
michielstock
1
330
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
180
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
430
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.3k
機械学習 - SVM
trycycle
PRO
1
970
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
Ignite の1年間の軌跡
ktombow
0
200
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
140
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
1.5k
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
240
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
190
Featured
See All Featured
BBQ
matthewcrist
89
10k
The agentic SEO stack - context over prompts
schlessera
0
610
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
230
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Skip the Path - Find Your Career Trail
mkilby
0
50
How to Think Like a Performance Engineer
csswizardry
28
2.4k
A Tale of Four Properties
chriscoyier
162
24k
The Language of Interfaces
destraynor
162
26k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
100k
The SEO identity crisis: Don't let AI make you average
varn
0
57
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
170
Transcript
もう一度理解する Transformer(後編) 金研 機械学習勉強会 2022/09/06 中村勇士
–––––––– 単語間の注目度 前編の復習 • RNN ◦ 再帰型ネットワークの導入 ◦ 前の単語に着目する •
Bi-RNN ◦ 再帰型ネットワークが双方向に ◦ 前後の単語に着目する • Encoder-Decoder ◦ 文脈ベクトルの導入 ◦ 文章全体の意味をもつ • Attention ◦ 注意機構の導入 ◦ 時間の重みを考慮した文脈ベクトル ◦ 翻訳前後の単語間の関係性を表す this h s h t h~ t c a is . a pen < > これ は は Attention –––––– 文脈ベクトル ––––––– 翻訳する単語の情報(隠れ状態)
• Transformer ◦ RNNからSelf-Attentionへ ・単語の流れではなく、単語間の関係性を学習 ・系列長に左右されない ・並列化が可能 ◦ Scaled Dot-Product
Attention・Muti-Head Attentionの導入 • どんなモデル? ◦ 『Attention Is All You Need』(2017) ◦ 高性能、様々な分野で使われる ・BERT → Google 翻訳 ・GPT-3 → 1ヶ月間ブログを書いたのにAIだと気づかれず ・ViT → 画像認識 後編の内容 Attention
• Multi-Head Attention ◦ Scaled Dot-Product Attentionを結合 Scaled Dot-Product /
Multi-Head Attention • Scaled Dot-Product Attention ◦ QueryとKeyから注目度を計算 ◦ Keyに対応するValueに注目度を反映 Q:Query K:Key(Valueと対応) V:Value(Keyと対応) √d k :次元の補正 softmax:確率に変換 –––––––––––––––––––––––––––– 注目度 Concat:結合 W:重み
• Multi-Head Attentionの使い方の話 ◦ 今まで: 翻訳前後の単語間の関係性に注目 ◦ Self-Attention: 文章内の単語間の関係性に注目 ◦
RNNからSelf-Attentionへ Self-Attention V K Q V K Q Self-Attention Attention
Concat:結合 W:重み • Multi-Head Attention ◦ Scaled Dot-Product Attentionを結合 Scaled
Dot-Product / Multi-Head Attention • Scaled Dot-Product Attention ◦ QueryとKeyから注目度を計算 ◦ Keyに対応するValueに注目度を反映 Q:Query K:Key(Valueと対応) V:Value(Keyと対応) √d k :次元の補正 softmax:確率に変換 Self-Attentionでは、 Q・K・Vは元々同じ値 それぞれ異なる重みをかける 1つの文章を 3つの角度 × 8つの領域で認識
• Feed Forward ◦ • Add & Norm ◦ スキップコネクション
◦ 正規化 • Embedding ◦ 単語をベクトルに埋め込み • Positional Encoding ◦ ベクトルの並び順を与える • Masked Multi-Head Attention ◦ 未来の情報をマスク その他の機構 Encoder Decoder
• Positional Encoding ◦ ベクトルの並び順を与える 吾輩 / は / 猫
/ で / ある or は / 猫 / ある / で / 吾輩 ◦ 埋め込みベクトル + ポジション固有の値 ◦ 三角関数だと学習しやすい ◦ Positional Encoding • Embedding ◦ 単語をベクトルに埋め込み ID 単語 ベクトル 1 りんご [0, 0, 0, 1] 2 みかん [0, 0, 1, 0] …… …… …… 7 ばなな [0, 1, 1, 0] …… …… …… pos:単語の順番 i:次元 d model : 全体の次元数
• Transformer ◦ RNNからSelf-Attentionへ ・単語の流れではなく、単語間の関係性を学習 ・系列長に左右されない ・並列化が可能 ◦ Scaled Dot-Product
Attention・Muti-Head Attentionの導入 • どんなモデル? ◦ 『Attention Is All You Need』(2017) ◦ 高性能、様々な分野で使われる ・BERT → Google 翻訳 ・GPT-3 → 1ヶ月間ブログを書いたのにAIだと気づかれず ・ViT → 画像認識 まとめ Attention