Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
もう一度理解するTransformer(後編)
Search
winnie279
September 06, 2022
Science
0
79
もう一度理解するTransformer(後編)
もう一度理解するTransformer(後編), 中村勇士, 2022
winnie279
September 06, 2022
Tweet
Share
More Decks by winnie279
See All by winnie279
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
60
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
67
5分で学ぶOpenAI APIハンズオン
yjn279
0
200
『確率思考の戦略論』
yjn279
0
140
Amazonまでのレコメンド入門
yjn279
1
160
金研究室 勉強会 『もう一度理解する Transformer(前編)』
yjn279
0
100
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
660
金研究室 勉強会 『Seismic Data Augmentation Based on Conditional Generative Adversarial Networks』
yjn279
0
96
金研究室 勉強会 『バックプロパゲーションと勾配消失問題』
yjn279
0
400
Other Decks in Science
See All in Science
🌏地球から🌌宇宙まで! 〜ケプラーの法則で繋がる天体の運動〜
syotasasaki593876
1
100
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
250
Transport information Geometry: Current and Future II
lwc2017
0
190
Lean4による汎化誤差評価の形式化
milano0017
1
300
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
300
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
230
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
330
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.5k
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
980
データベース08: 実体関連モデルとは?
trycycle
PRO
0
930
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
0
120
データベース03: 関係データモデル
trycycle
PRO
1
260
Featured
See All Featured
KATA
mclloyd
32
14k
Unsuck your backbone
ammeep
671
58k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
520
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Typedesign – Prime Four
hannesfritz
42
2.8k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
Speed Design
sergeychernyshev
32
1.1k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Transcript
もう一度理解する Transformer(後編) 金研 機械学習勉強会 2022/09/06 中村勇士
–––––––– 単語間の注目度 前編の復習 • RNN ◦ 再帰型ネットワークの導入 ◦ 前の単語に着目する •
Bi-RNN ◦ 再帰型ネットワークが双方向に ◦ 前後の単語に着目する • Encoder-Decoder ◦ 文脈ベクトルの導入 ◦ 文章全体の意味をもつ • Attention ◦ 注意機構の導入 ◦ 時間の重みを考慮した文脈ベクトル ◦ 翻訳前後の単語間の関係性を表す this h s h t h~ t c a is . a pen < > これ は は Attention –––––– 文脈ベクトル ––––––– 翻訳する単語の情報(隠れ状態)
• Transformer ◦ RNNからSelf-Attentionへ ・単語の流れではなく、単語間の関係性を学習 ・系列長に左右されない ・並列化が可能 ◦ Scaled Dot-Product
Attention・Muti-Head Attentionの導入 • どんなモデル? ◦ 『Attention Is All You Need』(2017) ◦ 高性能、様々な分野で使われる ・BERT → Google 翻訳 ・GPT-3 → 1ヶ月間ブログを書いたのにAIだと気づかれず ・ViT → 画像認識 後編の内容 Attention
• Multi-Head Attention ◦ Scaled Dot-Product Attentionを結合 Scaled Dot-Product /
Multi-Head Attention • Scaled Dot-Product Attention ◦ QueryとKeyから注目度を計算 ◦ Keyに対応するValueに注目度を反映 Q:Query K:Key(Valueと対応) V:Value(Keyと対応) √d k :次元の補正 softmax:確率に変換 –––––––––––––––––––––––––––– 注目度 Concat:結合 W:重み
• Multi-Head Attentionの使い方の話 ◦ 今まで: 翻訳前後の単語間の関係性に注目 ◦ Self-Attention: 文章内の単語間の関係性に注目 ◦
RNNからSelf-Attentionへ Self-Attention V K Q V K Q Self-Attention Attention
Concat:結合 W:重み • Multi-Head Attention ◦ Scaled Dot-Product Attentionを結合 Scaled
Dot-Product / Multi-Head Attention • Scaled Dot-Product Attention ◦ QueryとKeyから注目度を計算 ◦ Keyに対応するValueに注目度を反映 Q:Query K:Key(Valueと対応) V:Value(Keyと対応) √d k :次元の補正 softmax:確率に変換 Self-Attentionでは、 Q・K・Vは元々同じ値 それぞれ異なる重みをかける 1つの文章を 3つの角度 × 8つの領域で認識
• Feed Forward ◦ • Add & Norm ◦ スキップコネクション
◦ 正規化 • Embedding ◦ 単語をベクトルに埋め込み • Positional Encoding ◦ ベクトルの並び順を与える • Masked Multi-Head Attention ◦ 未来の情報をマスク その他の機構 Encoder Decoder
• Positional Encoding ◦ ベクトルの並び順を与える 吾輩 / は / 猫
/ で / ある or は / 猫 / ある / で / 吾輩 ◦ 埋め込みベクトル + ポジション固有の値 ◦ 三角関数だと学習しやすい ◦ Positional Encoding • Embedding ◦ 単語をベクトルに埋め込み ID 単語 ベクトル 1 りんご [0, 0, 0, 1] 2 みかん [0, 0, 1, 0] …… …… …… 7 ばなな [0, 1, 1, 0] …… …… …… pos:単語の順番 i:次元 d model : 全体の次元数
• Transformer ◦ RNNからSelf-Attentionへ ・単語の流れではなく、単語間の関係性を学習 ・系列長に左右されない ・並列化が可能 ◦ Scaled Dot-Product
Attention・Muti-Head Attentionの導入 • どんなモデル? ◦ 『Attention Is All You Need』(2017) ◦ 高性能、様々な分野で使われる ・BERT → Google 翻訳 ・GPT-3 → 1ヶ月間ブログを書いたのにAIだと気づかれず ・ViT → 画像認識 まとめ Attention