Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
もう一度理解するTransformer(後編)
Search
winnie279
September 06, 2022
Science
0
85
もう一度理解するTransformer(後編)
もう一度理解するTransformer(後編), 中村勇士, 2022
winnie279
September 06, 2022
Tweet
Share
More Decks by winnie279
See All by winnie279
NowWay:訪⽇外国⼈旅⾏者向けの災害⽀援サービス
yjn279
0
12
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
68
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
73
5分で学ぶOpenAI APIハンズオン
yjn279
0
220
『確率思考の戦略論』
yjn279
0
150
Amazonまでのレコメンド入門
yjn279
1
180
金研究室 勉強会 『もう一度理解する Transformer(前編)』
yjn279
0
120
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
860
金研究室 勉強会 『Seismic Data Augmentation Based on Conditional Generative Adversarial Networks』
yjn279
0
110
Other Decks in Science
See All in Science
機械学習 - DBSCAN
trycycle
PRO
0
1.5k
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
120
MCMCのR-hatは分散分析である
moricup
0
570
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
710
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
140
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1.1k
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
250
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
320
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
0
140
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
Featured
See All Featured
We Are The Robots
honzajavorek
0
150
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
The Spectacular Lies of Maps
axbom
PRO
1
490
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
How to build a perfect <img>
jonoalderson
1
4.9k
What's in a price? How to price your products and services
michaelherold
247
13k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Facilitating Awesome Meetings
lara
57
6.7k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
100k
The Curse of the Amulet
leimatthew05
1
7.9k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Transcript
もう一度理解する Transformer(後編) 金研 機械学習勉強会 2022/09/06 中村勇士
–––––––– 単語間の注目度 前編の復習 • RNN ◦ 再帰型ネットワークの導入 ◦ 前の単語に着目する •
Bi-RNN ◦ 再帰型ネットワークが双方向に ◦ 前後の単語に着目する • Encoder-Decoder ◦ 文脈ベクトルの導入 ◦ 文章全体の意味をもつ • Attention ◦ 注意機構の導入 ◦ 時間の重みを考慮した文脈ベクトル ◦ 翻訳前後の単語間の関係性を表す this h s h t h~ t c a is . a pen < > これ は は Attention –––––– 文脈ベクトル ––––––– 翻訳する単語の情報(隠れ状態)
• Transformer ◦ RNNからSelf-Attentionへ ・単語の流れではなく、単語間の関係性を学習 ・系列長に左右されない ・並列化が可能 ◦ Scaled Dot-Product
Attention・Muti-Head Attentionの導入 • どんなモデル? ◦ 『Attention Is All You Need』(2017) ◦ 高性能、様々な分野で使われる ・BERT → Google 翻訳 ・GPT-3 → 1ヶ月間ブログを書いたのにAIだと気づかれず ・ViT → 画像認識 後編の内容 Attention
• Multi-Head Attention ◦ Scaled Dot-Product Attentionを結合 Scaled Dot-Product /
Multi-Head Attention • Scaled Dot-Product Attention ◦ QueryとKeyから注目度を計算 ◦ Keyに対応するValueに注目度を反映 Q:Query K:Key(Valueと対応) V:Value(Keyと対応) √d k :次元の補正 softmax:確率に変換 –––––––––––––––––––––––––––– 注目度 Concat:結合 W:重み
• Multi-Head Attentionの使い方の話 ◦ 今まで: 翻訳前後の単語間の関係性に注目 ◦ Self-Attention: 文章内の単語間の関係性に注目 ◦
RNNからSelf-Attentionへ Self-Attention V K Q V K Q Self-Attention Attention
Concat:結合 W:重み • Multi-Head Attention ◦ Scaled Dot-Product Attentionを結合 Scaled
Dot-Product / Multi-Head Attention • Scaled Dot-Product Attention ◦ QueryとKeyから注目度を計算 ◦ Keyに対応するValueに注目度を反映 Q:Query K:Key(Valueと対応) V:Value(Keyと対応) √d k :次元の補正 softmax:確率に変換 Self-Attentionでは、 Q・K・Vは元々同じ値 それぞれ異なる重みをかける 1つの文章を 3つの角度 × 8つの領域で認識
• Feed Forward ◦ • Add & Norm ◦ スキップコネクション
◦ 正規化 • Embedding ◦ 単語をベクトルに埋め込み • Positional Encoding ◦ ベクトルの並び順を与える • Masked Multi-Head Attention ◦ 未来の情報をマスク その他の機構 Encoder Decoder
• Positional Encoding ◦ ベクトルの並び順を与える 吾輩 / は / 猫
/ で / ある or は / 猫 / ある / で / 吾輩 ◦ 埋め込みベクトル + ポジション固有の値 ◦ 三角関数だと学習しやすい ◦ Positional Encoding • Embedding ◦ 単語をベクトルに埋め込み ID 単語 ベクトル 1 りんご [0, 0, 0, 1] 2 みかん [0, 0, 1, 0] …… …… …… 7 ばなな [0, 1, 1, 0] …… …… …… pos:単語の順番 i:次元 d model : 全体の次元数
• Transformer ◦ RNNからSelf-Attentionへ ・単語の流れではなく、単語間の関係性を学習 ・系列長に左右されない ・並列化が可能 ◦ Scaled Dot-Product
Attention・Muti-Head Attentionの導入 • どんなモデル? ◦ 『Attention Is All You Need』(2017) ◦ 高性能、様々な分野で使われる ・BERT → Google 翻訳 ・GPT-3 → 1ヶ月間ブログを書いたのにAIだと気づかれず ・ViT → 画像認識 まとめ Attention