Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Pascal-Like Triangles and Fibonacci-Like Sequences

Yushi Nakaya
September 01, 2017

Pascal-Like Triangles and Fibonacci-Like Sequences

The international conference “The 20th Japan Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCG^3 2017)”
August 29th- September 1st, 2017 (Tokyo University of Science, Tokyo, Japan )
http://www.jcdcgg.u-tokai.ac.jp

Yushi Nakaya

September 01, 2017
Tweet

More Decks by Yushi Nakaya

Other Decks in Science

Transcript

  1. Pascal-Like Triangles and Fibonacci-Like Sequences Masaru Kitagawa†, Shota Suzuki† ,Yushi

    Nakaya‡, Yuki Tokuni†, Ryohei Miyadera†, Masanori Fukui* † Kwansei Gakuin * Hyogo University of Teacher Education ‡ Tohoku University
  2. We study a game. There are m red cards and

    n-m white cards. Box … … m cards n-m cards Total n cards are in the box
  3. There are p players A1,A2,…,Ap They take turns and pick

    up a card from a box. The game starts with player A1. When a player receives the box, he or she draws out a card, and these cards are not returned to the box. The first player to draw a red card loses the game, and the game ends. This game is mathematically the same as a Russian roulette game.
  4. 1. p players. 2. Each player picks up a card

    in his or her turn. 3. The first player who pick up a red card loses the game. Our Previous Results
  5. The denominators and numerators of the fractions form Pascal-like triangles.

    Example. 4 players play the game, and let f(n,m) be the probability that the first player loses in the game. We arrange f(n,m) vertically for n=1,2,3,.. horizontally for m=1,2,3,...,n.
  6. In general the probabilities of v-th player’s losing the game

    of p-players form Pascal-like triangle. We published this in Mathematical Gazette, 2010
  7. If we use the numerator of the fractions, then we

    have the triangle on the right side.
  8. An interesting property of Pascal‘s Triangle is that its diagonals

    sum to the Fibonacci sequence, as shown in the picture below:
  9. Our triangle’s diagonals sum to the sequence b1 = 1;

    b2 = 1; b3 = 1 + 1 = 2; b4 =1 + 2 = 3; b5 = 2 + 3 + 1 = 6; b6 = 2 + 4 + 3 = 9; b7 =2 + 6 + 6 + 1 = 15,…, and we have a sequence 1, 1, 2, 3, 6, 9, 15, …
  10. The sequence b1 = 1, b2 =1, b3 = 2,

    b4 =3, b5 = 6,b6 = 9, b7 = 15,… has the following property. Here, F(n) is the Fibonacci sequence.
  11. We generalize the card game so that the triangles of

    probabilities have Pascal-like property.
  12. ɾP playersɹ take turn, and each player pick up s

    cards in each turn. The first player who pick up a red card loses the game. The first generalization. Θ̍ Θ2 Θ3 …
  13. We arrange cards from left to right, and players pick

    up cards from left to right.ɹ ʜ ʜ
  14. We denote n-m white cards by blank spaces. We denote

    red cards by red circles. … n … *Example
  15. … s rounds Θ̍ Θ̎ Θp … … … Each

    of p players play s times, Then we have ps rounds. We call this a cycle. A cycle s rounds s rounds
  16. … s rounds s rounds s rounds Θ̍ Θ̎ Θp

    … … … The first cycle cycles … s rounds s rounds s rounds Θ̍ Θ̎ Θp … … … The k th cycle
  17. k-th cycle … … First cycle (k-1)-th cycle Θp Θp

    ps(k-1)round s rounds s rounds … … Θ1 h th round h rounds … The case that the first player picks up a red card in (k − 1)ps + h th round … … … Θ̍ Θ2 s rounds s rounds … … … Θ̍ Θ2 s rounds s rounds
  18. The number of combination is n - (k-1)ps -hCm-1 (k

    − 1)ps + h n n-((k − 1)ps + h) Here, we put m-1red cards Here we have white cards … … …
  19. Since there are n− m+ sp− h+1 sp ⎢ ⎣

    ⎢ ⎥ ⎦ ⎥ cycles for the first Player’s picking up red cards, The number of combination of red cards is n−(k−1) ps−h C m−1 . k=1 n−m+sp−h+1 sp ⎢ ⎣ ⎢ ⎥ ⎦ ⎥ ∑ h=1 s ∑
  20. We denote by U(n,m) the number of combination of positions

    of red cards when the first player loses the game. U(n,m) = n−(k−1)ps−h C m−1 k=1 n−m+sp−h+1 sp ⎢ ⎣ ⎢ ⎥ ⎦ ⎥ ∑ h=1 s ∑ F(n,m) = U(n,m) n C m The probability is
  21. Theorem Let U(n,m) be the number of combinations of red

    cards when the first player loses the game. Then, U(n,m) = U(n-1,m) + U(n-1,m-1) We omit the proof.
  22. Example When p =2 (2 players) and s = 2

    , then we have the following triangle of probabilities.
  23. When p =4 and s =1, we have 1, 1,

    2, 3, 6, 9, 15,…. When p = 2 and s=2, we have 1, 2, 3, 5, 9, 15, 24,…. Sequences produced by diagonals sum. Note that these two are very similar.
  24. When p = 4 and s = 1, we denote

    the sequence by b4,1(n). When p = 2 and s = 2, we denote the sequence by b2,2(n). Then b4,1(n+1)=b2,2(n) for n=1,2,3 (mod 4). Please see the relation between these sequences.
  25. In general, we have this sequence. bp,2(n+1)=b2p,1(n) for n=1,2…p-1 (mod

    p). The sequence produced by diagonals sum of game of p-persons who pick up 2 cards in each turn is very similar to the sequence for 2p persons who pick up 1 card in each turn.
  26. The Second Generalization Player A picks up s1 cards, and

    player B picks up s2 cards in each turn. Player A loses the game when he collects g1 red cards, and Player B loses the game when he collects g2 red cards. Note that a player loses the game when he picks up one card in the previous game.
  27. “Player A collects g1 red cards” ɹ“By picking up red

    cards, the sum of red cards in Player A’s hand reaches g1.” ɹ NOTE
  28. Example Player-A loses, after collecting three red cards. The game

    ends here. " " # # # " " # # # D D D D T T  s1=2, s2=3, Player-A’s goal : g1=3, Player-B’s goal : g2=2,
  29. The game ends here, since player B collect g2=2 cards.

    " " # # # " " # # # D D D D D T T  Example Player-B loses, after collecting two red cards. s1=2, s2=3, Player-A’s goal : g1=3, Player-B’s goal : g2=2,
  30. Example The number of cards n=10. The number of red

    cards m = 3. s1=2,s2=3, A’s goal : g1=3, B’s goal : g2=2, " " # # # " " # # # D D D D D T T  Player A cannot collect three red cards, and Player B cannot collect two red cards. D
  31. Theorem The number of combinations of red cards when player

    A loses the game is We are going to present an outline of the proof. U(n, m, s1, s2, g1, g2) = s1 X h=1 ( min(b n m+g1 h+s1 s1 c,b n+s1+s2 h s1+s2 c,b n m+s1+s2+g1+g2 1 s1+s2 c) X k=d g1+s1 h s1 e min(g2 1,m g1,(k 1)s2) X v=max(0,m n+(k 1)(s1+s2) g1+h ((k 1)s2 Cv ⇥ h+(k 1)s1 1 Cg1 1 ⇥ n (k 1)(s1+s2) h Cm v g1 )
  32. s1 X h=1 XX (k 1)s2 Cv ⇥ h+(k 1)s1

    1 Cg1 1 ⇥ n (k 1)(s1+s2) h Cm v g1 min(b n m + g1 h s1 c + 1, b n h s1 + s2 c + 1, b n m + g1 + g2 1 s1 + s2 c + 1) min(g2 1, m g1, (k 1)s2) v = max(0, m n + (k 1)(s1 + s2) g1 + h k = d g1 h s1 e + 1
  33. ʜ " # " T̍ T T̍ 1st cycle "

    T̍ # T " (k-1)th cycle I Suppose that player A finish collecting g1 red cards in (k-1)(s1+s2)+h th round. T 2nd cycle #
  34. Player A finish collecting g1 red cards in (k-1)(s1+s2)+h th

    round, and hence we have and ʜ " # " T̍ T T̍ 1st cycle " T̍ # T " (k-1)th cycle I T 2nd cycle #
  35. Player A picks up g1-1 red cards out of h+(k-1)s1-1

    positions, and hence we have Therefore … A B A s̍ s2 s̍ 1st cycle A s̍ B s2 A (k-1)th cycle h The number of combination is
  36. Suppose that player B collect v red cards before playerA

    collects g1 red cards. The number of combinations is Since there are (k-1)s2 places, we have A non-negative integer v should be less than g2. Otherwise B loses the game. Since player A collect g1 cards, player B collect v cards. From the remaining m-g1 cards.
  37. , and we have The number of combinations of putting

    remaining m-v-g1 cards into remaining n-((k -1)(s1 +s2)+h) places is Therefore
  38. By using inequalities for k and v in previous slide,

    we have Now we have all the inequalities for k and v, and hence U(n, m, s1, s2, g1, g2) = s1 X h=1 ( min(b n m+g1 h s1 c+1,b n h s1+s2 c+1,b n m+g1+g2 1 s1+s2 c+1) X k=d g1 h s1 e+1 min(g2 1,m g1,(k 1)s2) X v=max(0,m n+(k 1)(s1+s2) g1+h ((k 1)s2 Cv ⇥ h+(k 1)s1 1 Cg1 1 ⇥ n (k 1)(s1+s2) h Cm v g1 ) g1 h m + n + s1 s1 k g1 + g2 h m + n + s1 + s2 1 s1 + s2 k
  39. Pascal-like property holds when . Theorem Suppose that Then, U

    (n, m, s1, s2, g1, g2) = U (n 1, m 1, s1, s2, g1, g2) + U (n 1, m, s1, s2, g1, g2) m g1 + g2 m g1 + g2 In this case there is no draw for the game. We omit the proof here.
  40. We are going to present a prediction on the conditions

    for Pascal-like property to hold. Therefore we do not assume that m g1 + g2 .
  41. Suppose that g1<s1+1. Then we do not have Pascal-like property

    in certain part of the triangle. 6 O N 6 O N  6 O N  6 O N  6 O N  6 O N  0 0 0 0 0 0 2 6 6 2 3 9 9 3 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 2 1 0 1 3 3 1 0 3 10 12 6 1 0 6 22 31 21 7 1        In the triangle on the right side, red numbers are calculated by this formula. U(n,m) - ( U(n-1,m)+U(n-1,m-1) ). {s1 ,s2 }={2,3} {g1 ,g2 }={2,4}
  42.          

      0 0 0 0 0 0 2 6 6 2 3 9 9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 24 60 80 0 0 0 0 0 5 30 75 100 0 0 0 0 0 0 0 0 1 0 1 1 0 1 2 1 0 1 3 3 1 0 3 10 12 6 1 0 6 22 31 21 7 1 0 6 28 53 52 28 8 1 0 6 34 81 105 80 36 9 1 0 6 40 115 186 185 116 45 10 1 0 10 70 215 381 371 301 161 55 11 1 0 15 110 360 696 752 672 462 216 66 12 1 It seems to be clear where Pascal-like property holds and where does not hold.
  43. Prediction We studied where Pascal-like property does not hold. ŋn-coordinate

    ŋm-coordinate 0 0 0 0 0 0 2 6 6 2 3 9 9 3 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 2 1 0 1 3 3 1 0 3 10 12 6 1 0 6 22 31 21 7 1 0 6 28 53 52 28 8 1         n-coordinate m-coordinate
  44. 0 0 0 0 0 0 2 6 6 2

    3 9 9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 2 1 0 1 3 3 1 0 3 10 12 6 1 0 6 22 31 21 7 1 0 6 28 53 52 28 8 1 0 6 34 81 105 80 36 9 1 0 0 0 0 0 0 1 1 1 1 3 10 3 2 1 1 3 1 12 6 1 2 2 6 6 2 2 0 2 0 2 0 2 0 2 0 2 0
  45. Red positive numbers show where Pascal-like property does not hold,

    when s1=2 ,s2=3, g1=2,g2=4 n-coordinates m-coordinates �������� 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 3 0 4 0 0 5 0 0 0 6 2 6 6 2 7 3 9 9 3 0 8 0 0 0 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 4 24 60 80 0 0 0 0 0 12 5 30 75 100 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 6 54 216 504 0 0 0 0 0 0 0 0 0 0 17 7 63 252 588 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 8 96 528 1760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 9 108 594 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  46. Prediction on positions (n,m) where Pascal-like property does not hold.

    (1) when g1 < s1 + 1 (k 1) n = (s1 + s2) k + 1, (s1 + s2) k + 2, ...., (s1 + s2) k + s1 (a) If g1 = 1 m = g1 + 1, g1 + 2, ...., g1 + g2 1 (b) If g1 > 1 m = g1, g1 + 1, g1 + 2, ...., g1 + g2 1
  47. (2) when g1 ≥ s1 + 1 (a) If g1

    = 1 m = g1 + 1, g1 + 2, ...., g1 + g2 1 (b) If g1 > 1 m = g1, g1 + 1, g1 + 2, ...., g1 + g2 1 (s1 + s2) ⇥ d g1 s1 s1 e + s1 } ɾ ɾ ɾ ✓ k > d g1 s1 s1 e ◆ (s1 + s2) k + 1, (s1 + s2) k + 2, ...., (s1 + s2) k + s1 (s1 + s2) ⇥ d g1 s1 s1 e + mod[g1 1, s1] + 1, (s1 + s2) ⇥ d g1 s1 s1 e + mod[g1 1, s1] + 2, ...., n = (s1 + s2) k + 1, (s1 + s2) k + 2, ...., (s1 + s2) k + s1
  48. s1=2 ,s2=3, g1=2,g2=4 n-coordinates m-coordinates �������� 2 3 4 5

    6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 3 0 4 0 0 5 0 0 0 6 2 6 6 2 7 3 9 9 3 0 8 0 0 0 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 4 24 60 80 0 0 0 0 0 12 5 30 75 100 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 6 54 216 504 0 0 0 0 0 0 0 0 0 0 17 7 63 252 588 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 8 96 528 1760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 9 108 594 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  49. s1=2 ,s2=3, g1=2,g2=4 n-coordinates m-coordinates �������� 2 3 4 5

    6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 3 0 4 0 0 5 0 0 0 6 2 6 6 2 7 3 9 9 3 0 8 0 0 0 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 4 24 60 80 0 0 0 0 0 12 5 30 75 100 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 6 54 216 504 0 0 0 0 0 0 0 0 0 0 17 7 63 252 588 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g1 < s1 + 1 (1) g1 > 1 (b)
  50. Prediction on positions (n,m) where Pascal-like property does not hold.

    (1) when g1 < s1 + 1 (k 1) n = (s1 + s2) k + 1, (s1 + s2) k + 2, ...., (s1 + s2) k + s1 (b) If g1 > 1 m = g1, g1 + 1, g1 + 2, ...., g1 + g2 1 �������� 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 3 0 4 0 0 5 0 0 0 6 2 6 6 2 7 3 9 9 3 0 8 0 0 0 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 4 24 60 80 0 0 0 0 0 12 5 30 75 100 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 6 54 216 504 0 0 0 0 0 0 0 0 0 0 17 7 63 252 588 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  51. �������� 2 3 4 5 6 7 8 9 10

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 5 3 0 4 0 0 5 0 0 0 6 2 6 6 2 7 3 9 9 3 0 8 0 0 0 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 4 24 60 80 0 0 0 0 0 12 5 30 75 100 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 6 54 216 504 0 0 0 0 0 0 0 0 0 0 17 7 63 252 588 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 8 96 528 1760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 9 108 594 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 10 150 1050 4550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 11 165 1155 5005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 12 216 1836 9792 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 13 234 1989 10 608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 14 294 2940 18 620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 15 315 3150 19 950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 16 384 4416 32 384 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 17 408 4692 34 408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 18 486 6318 52 650 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 19 513 6669 55 575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Now, we are trying to prove this prediction. n-coordinates m-coordinates
  52. �������� 2 3 4 5 6 7 8 9 10

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 3 3 0 4 0 0 5 0 0 0 6 2 6 6 2 7 3 9 9 3 0 8 0 0 0 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 4 24 60 80 0 0 0 0 0 12 5 30 75 100 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 6 54 216 504 0 0 0 0 0 0 0 0 0 0 17 7 63 252 588 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 8 96 528 1760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 9 108 594 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 10 150 1050 4550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 11 165 1155 5005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 12 216 1836 9792 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 13 234 1989 10 608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 14 294 2940 18 620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n-coordinates m-coordinates
  53. There are no draw on this part. m g1 +

    g2 ※ m is the number of all red cards
  54. m g1 + g2 ※ m is the number of

    all red cards The pascal like property holds in whole area of this part.
  55. �������� 2 3 4 5 6 7 8 9 10

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 3 3 0 4 0 0 5 0 0 0 6 2 6 6 2 7 3 9 9 3 0 8 0 0 0 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 4 24 60 80 0 0 0 0 0 12 5 30 75 100 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 6 54 216 504 0 0 0 0 0 0 0 0 0 0 17 7 63 252 588 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 8 96 528 1760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 9 108 594 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 10 150 1050 4550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 11 165 1155 5005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 12 216 1836 9792 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 13 234 1989 10 608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 14 294 2940 18 620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 There are draw on this part. However, the pascal-like property holds here. m < g1 + g2
  56. �������� 2 3 4 5 6 7 8 9 10

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 3 3 0 4 0 0 5 0 0 0 6 2 6 6 2 7 3 9 9 3 0 8 0 0 0 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 4 24 60 80 0 0 0 0 0 12 5 30 75 100 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 6 54 216 504 0 0 0 0 0 0 0 0 0 0 17 7 63 252 588 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 8 96 528 1760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 9 108 594 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 10 150 1050 4550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 11 165 1155 5005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 12 216 1836 9792 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 13 234 1989 10 608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 14 294 2940 18 620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 This blue part hold pascal like property , nevertheless, there are draw on this part.
  57. �������� 2 3 4 5 6 7 8 9 10

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 3 3 0 4 0 0 5 0 0 0 6 2 6 6 2 7 3 9 9 3 0 8 0 0 0 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 4 24 60 80 0 0 0 0 0 12 5 30 75 100 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 6 54 216 504 0 0 0 0 0 0 0 0 0 0 17 7 63 252 588 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 8 96 528 1760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 9 108 594 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 10 150 1050 4550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 11 165 1155 5005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 12 216 1836 9792 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 13 234 1989 10 608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 14 294 2940 18 620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n-coordinates m-coordinates
  58. ��������� 2 3 4 5 6 7 8 9 10

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3 2 4 0 0 5 0 0 0 6 3 6 3 0 7 4 8 4 0 0 8 5 10 5 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 6 24 36 0 0 0 0 0 0 12 7 28 42 0 0 0 0 0 0 0 13 8 32 48 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 9 54 135 0 0 0 0 0 0 0 0 0 0 0 17 10 60 150 0 0 0 0 0 0 0 0 0 0 0 0 18 11 66 165 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 12 96 336 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 13 104 364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 14 112 392 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 15 150 675 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 16 160 720 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 17 170 765 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 This is an exception of this game.
  59. ��������� 2 3 4 5 6 7 8 9 10

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3 2 4 0 0 5 0 0 0 6 3 6 3 0 7 4 8 4 0 0 8 5 10 5 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 6 24 36 0 0 0 0 0 0 12 7 28 42 0 0 0 0 0 0 0 13 8 32 48 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 9 54 135 0 0 0 0 0 0 0 0 0 0 0 17 10 60 150 0 0 0 0 0 0 0 0 0 0 0 0 18 11 66 165 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 12 96 336 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 13 104 364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 14 112 392 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 15 150 675 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 16 160 720 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 17 170 765 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ��������� 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3 2 4 0 0 5 0 0 0 6 3 6 3 0 7 4 8 4 0 0 8 5 10 5 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 6 24 36 0 0 0 0 0 0 12 7 28 42 0 0 0 0 0 0 0 13 8 32 48 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 16 9 54 135 0 0 0 0 0 0 0 0 0 0 0 17 10 60 150 0 0 0 0 0 0 0 0 0 0 0 0 18 11 66 165 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 12 96 336 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 13 104 364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 14 112 392 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 15 150 675 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 16 160 720 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 17 170 765 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 this is the exception .
  60. 2 3 4 5 6 7 8 9 10 11

    12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3 3 2 4 3 0 5 0 0 0 6 0 0 0 0 7 4 8 4 0 0 8 5 10 5 0 0 0 9 6 12 6 0 0 0 0 0 7 14 7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 3 8 32 48 32 0 0 0 0 0 0 0 4 9 36 54 36 0 0 0 0 0 0 0 0 5 10 40 60 40 0 0 0 0 0 0 0 0 0 6 11 44 66 44 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 12 72 180 240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 78 195 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 84 210 280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 15 90 225 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 16 128 448 896 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 17 136 476 952 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 18 144 504 1008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 19 152 532 1064 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20 200 900 2400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 21 210 945 2520 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 22 220 990 2640 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 23 230 1035 2760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  61. The formula of this exception 2  g1  s1

    1 When , m = g1 n = g1 + 1, g1 + 2, ...., s1 these positions also doesn’t hold pascal like properties.