Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Generalized Ryuoh-Nim: A Variant of the class...
Search
Yushi Nakaya
August 16, 2016
Science
0
120
A Generalized Ryuoh-Nim: A Variant of the classical game of Wythoff Nim
情報処理学会 第36回ゲーム情報学研究会にて.この発表にて,若手奨励賞を受賞.
Yushi Nakaya
August 16, 2016
Tweet
Share
More Decks by Yushi Nakaya
See All by Yushi Nakaya
WBA LT20201129
ynntech
0
82
全脳アーキテクチャ若手の会 東北支部 第二回LT
ynntech
0
94
Spajam 2018 仙台予選 「DETECTIVE NANAKO」
ynntech
0
130
第5回関東Jamboree
ynntech
0
57
Pascal-like triangle of Russian Roulette @19th meeting with USTB &Tohoku University
ynntech
0
98
ロシアンルーレット式確率ゲームに現れる Pascal-like triangle に関する研究 ~確率的ゲームの美しい規則性~
ynntech
0
96
Pascal-Like Triangles and Fibonacci-Like Sequences
ynntech
0
130
ゲーム理論ってなんだろう?
ynntech
0
57
PDPH既往患者への帝王切開 に対する麻酔法の提案
ynntech
0
90
Other Decks in Science
See All in Science
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
4
1.9k
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
780
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
510
機械学習 - DBSCAN
trycycle
PRO
0
950
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
170
データマイニング - ノードの中心性
trycycle
PRO
0
250
Hakonwa-Quaternion
hiranabe
1
110
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
220
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
450
データベース03: 関係データモデル
trycycle
PRO
1
240
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
400
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
180
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
182
54k
A designer walks into a library…
pauljervisheath
207
24k
A Tale of Four Properties
chriscoyier
160
23k
4 Signs Your Business is Dying
shpigford
184
22k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Embracing the Ebb and Flow
colly
86
4.8k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Practical Orchestrator
shlominoach
190
11k
Become a Pro
speakerdeck
PRO
29
5.5k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Faster Mobile Websites
deanohume
308
31k
Statistics for Hackers
jakevdp
799
220k
Transcript
A Generalized Ryuoh - Nim: A Variant of the classical
game of Wythoff Nim த༔ࢿ† ٶࣉྑฏ† Ҫণଇ* ށᅳ༑و† † ֶؔӃߴ෦ * ฌݿڭҭେֶ
ݚڀͷഎܠɾత ɾΈ߹ΘͤήʔϜͷҰछͰ͋ΔੴऔΓήʔϜͷ มछΛݚڀ͍ͯͨ͠ɻ ɾ$PSOFSUIF2VFFO 8ZUIP⒎`T(BNF ͱ͍͏ ͷΛΓɺ͜ΕΛมܗͤͨ͞ͷͰɺ(SVOEZ ɹ͕៉ྷʹͳΔͷΛ୳ͨ͠ɻ
1.ݚڀͷഎܠɾత 2.Corner the “Ryuoh”(ཾԦ) problem 2.1 ήʔϜͷઆ໌ 2.2 Grundy 2.3ͦͷଞಈ͖ΛՃͨ͠߹
3.Corner the “Ryuma”(ཾഅ) problem 4.Corner the “Ryuma”(ཾഅ) problem with pass 5.Grundyͷͭۮحੑ શମͷྲྀΕ
Corner the “Ryuoh”(ཾԦ) problem w ਓ͕ަޓʹνΣε൫্ͷཾԦ ඈं Λಈ͔͢ w ࠨ্ʹ࣋ͬͯߦͬͨϓϨΠϠͷউͪ
Δ Corner the “Ryuoh”(ཾԦ) problem
None
None
None
ϓϨΠϠʔ̍ ͷλʔϯ Corner the “Ryuoh”(ཾԦ) problem
ϓϨΠϠʔ̍ ͷλʔϯ Corner the “Ryuoh”(ཾԦ) problem
ϓϨΠϠʔ ͷλʔϯ Corner the “Ryuoh”(ཾԦ) problem
ϓϨΠϠʔ ͷλʔϯ Corner the “Ryuoh”(ཾԦ) problem
ϓϨΠϠʔ ͷউͪʂʂ Corner the “Ryuoh”(ཾԦ) problem
x y
x y (x,y)=(2,3)
x y (x,y)=(2,3) (x,y)=(2,0) 2 3 2 0 x y
x y (x,y)=(2,3) (x,y)=(1,2) 2 3 1 2 x y
Ҿ͖͚ͳ͠ͷෆภήʔϜͳΒɺ ઌखඞউϙδγϣϯͱ ޙखඞউϙδγϣϯ͕͋Δɻ
ɾ࠷ऴہ໘Λ̌ͱ͢Δɻ ɾͦͷଞͷ(SVOEZߦ͖ઌʹͳ͍࠷খͷඇෛɻ (SVOEZΛఆٛ͢Δ
x y
x y 0ͱఆٛ͢Δ 0
x y 0
x y 0 ߦ͖ઌʹͳ͍ ࠷খͷෛͰͳ͍
x y 0 ࠓճ̌Λআ͘ ࠷খͷෛͰͳ͍
x y 0 Grundy 1ͱͳΔ 1
x y 0 1
x y 0 1 1
x y 0 1 1
x y 0 1 1 ߦ͖ઌʹͳ͍ ࠷খͷෛͰͳ͍
x y 0 1 1 0,1Λআ͘ ࠷খͷෛͰͳ͍
x y 0 1 1 2 Grundy 2ͱͳΔ
x y 0 1
x y 0 1
x y 0 1 2
x y 0 1 2 2 1
x y 0 1 2 2 1 1,2Λআ͘ ࠷খͷෛͰͳ͍
x y 0 1 2 2 1 0
x y 0 1
x y 0 1
x y 0 1 2
x y 0 1 2 2 1
x y 0 1 2 2 1 0
x y 0
x y 0 1 1 2 2 0 2 0
x y 0 1 1 2 2 0 2 0
ߦ͖ઌʹͳ͍ ࠷খͷෛͰͳ͍
x y 0 1 1 2 2 0 2 0
1
G(x,y)=mex ({ G(u,v); (u,v)∈move(x,y)}) ࠷ऴہ໘ͷGrundy0
mex (A) ඇෛͷू߹ A ʹଘࡏ͠ͳ͍࠷খ ͷඇෛ G((x,y))=mex ({ G(u,v);
(u,v)∈move(x,y)})
mex ({0,1,2,3,5}) = G((x,y))=mex ({ G(u,v); (u,v)∈move(x,y)})
mex ({0,1,2,3,5}) = 4 G((x,y))=mex ({ G(u,v); (u,v)∈move(x,y)})
move ((x, y)) (x, y)͔Β ̍खͰߦ͚Δશͯͷ߹ͷू߹ G((x,y))=mex ({ G(u,v);
(u,v)∈move(x,y)})
move ( (2,1) )=((2,0),(1,1),(0,1),(1,0)) x y 0 1 2 1
2 ͔Β̍खͰಈ͚Δ શͯͷ߹ͷू߹
(x,y)ͷ̍खͰͷҠಈઌͷ Grundyʹؚ·Εͳ͍ ࠷খͷෛͰͳ͍ G((x,y))=mex ({ G(u,v); (u,v)∈move(x,y)}) G(x,y)=G(0,0)=0
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 Grundy͕0ͷͱ͜Ζ ޙखඞউϙδγϣϯ
0 1 1 2 2 0 Grundy͕0ͳͷͰɺ ߦ͖ઌʹ0ͳ͍
0 1 1 2 2 0 Grundy͕1ͳͷͰɺ ߦ͖ઌʹ0͕͋Δ 2 0
1
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 ઌख ͷλʔϯ
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 ޙख ͷλʔϯ
ઌख ͷλʔϯ 0 1 2 3 4 5 1 2
0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1
ޙख ͷλʔϯ 0 1 2 3 4 5 1 2
0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1
ޙखͷউͪ 0 1 2 3 4 5 1 2 0
4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1
G((x, y)) = mod(x + y, 3) + 3(b x
3 c b y 3 c) mod(x+y,3)ɺ x+yΛ̏Ͱׂͬͨ༨Γͷ͜ͱɻ b x 3 c x 3 ɺ ͷ෦ͷ͜ͱɻ ɺഉଞతཧͱಉ͡ɻ χϜ
G((x, y)) = mod(x + y, 3) + 3(b x
3 c b y 3 c) mod(x+y,3)ɺ x+yΛ̏Ͱׂͬͨ༨Γͷ͜ͱɻ ɺഉଞతཧͱಉ͡ɻ χϜ b x 3 c x 3 ɺ ͷ෦ͷ͜ͱɻ
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16 17 15 19 20 18 2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17 15 16 20 18 19 3 3 4 5 0 1 2 9 10 11 6 7 8 15 16 17 12 13 14 21 22 23 4 4 5 3 1 2 0 10 11 9 7 8 6 16 17 15 13 14 12 22 23 21 5 5 3 4 2 0 1 11 9 10 8 6 7 17 15 16 14 12 13 23 21 22 6 6 7 8 9 10 11 0 1 2 3 4 5 18 19 20 21 22 23 12 13 14 7 7 8 6 10 11 9 1 2 0 4 5 3 19 20 18 22 23 21 13 14 12 8 8 6 7 11 9 10 2 0 1 5 3 4 20 18 19 23 21 22 14 12 13 9 9 10 11 6 7 8 3 4 5 0 1 2 21 22 23 18 19 20 15 16 17 10 10 11 9 7 8 6 4 5 3 1 2 0 22 23 21 19 20 18 16 17 15 11 11 9 10 8 6 7 5 3 4 2 0 1 23 21 22 20 18 19 17 15 16 12 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 13 13 14 12 16 17 15 19 20 18 22 23 21 1 2 0 4 5 3 7 8 6 14 14 12 13 17 15 16 20 18 19 23 21 22 2 0 1 5 3 4 8 6 7 15 15 16 17 12 13 14 21 22 23 18 19 20 3 4 5 0 1 2 9 10 11 16 16 17 15 13 14 12 22 23 21 19 20 18 4 5 3 1 2 0 10 11 9 17 17 15 16 14 12 13 23 21 22 20 18 19 5 3 4 2 0 1 11 9 10 18 18 19 20 21 22 23 12 13 14 15 16 17 6 7 8 9 10 11 0 1 2 19 19 20 18 22 23 21 13 14 12 16 17 15 7 8 6 10 11 9 1 2 0 20 20 18 19 23 21 22 14 12 13 17 15 16 8 6 7 11 9 10 2 0 1 G((x, y)) = mod(x + y, 3) + 3(b x 3 c b y 3 c)
G((x, y)) = mod(x + y, 3) + 3(b x
3 c b y 3 c) "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 17 18 19 20 "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 17 18 19 20
G((x, y)) = mod(x + y, 3) + 3(b x
3 c b y 3 c) "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 "" 0 1 2 3 4 5 6 7 8 9 10 11 0 0 1 2 0 1 2 0 1 2 0 1 2 1 1 2 0 1 2 0 1 2 0 1 2 0 2 2 0 1 2 0 1 2 0 1 2 0 1 3 0 1 2 0 1 2 0 1 2 0 1 2 4 1 2 0 1 2 0 1 2 0 1 2 0 5 2 0 1 2 0 1 2 0 1 2 0 1 6 0 1 2 0 1 2 0 1 2 0 1 2 7 1 2 0 1 2 0 1 2 0 1 2 0 8 2 0 1 2 0 1 2 0 1 2 0 1 9 0 1 2 0 1 2 0 1 2 0 1 2 10 1 2 0 1 2 0 1 2 0 1 2 0 11 2 0 1 2 0 1 2 0 1 2 0 1 0 1 2 0 1 2 3 +3(2 3)
G((x, y)) = mod(x + y, 3) + 3(b x
3 c b y 3 c) "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 17 18 19 20 "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 17 18 19 20
දͷGrundy͔Β ΛҾ͘ͱ ... + y, 3) + 3(b x 3
c b y 3 c)
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 1 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 2 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 4 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 5 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 6 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 7 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 8 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 9 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 10 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 11 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 12 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 13 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 14 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 15 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 16 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 17 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 18 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 19 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 20 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1
None
None
Out[45]= 0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 2 3 0 5 6 7 4 9 10 11 8 13 14 15 12 17 18 19 16 21 2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 18 19 16 17 22 3 3 0 1 2 7 4 5 6 11 8 9 10 15 12 13 14 19 16 17 18 23 4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 20 21 22 23 16 5 5 6 7 4 1 2 3 0 13 14 15 12 9 10 11 8 21 22 23 20 17 6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 22 23 20 21 18 7 7 4 5 6 3 0 1 2 15 12 13 14 11 8 9 10 23 20 21 22 19 8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 24 25 26 27 28 9 9 10 11 8 13 14 15 12 1 2 3 0 5 6 7 4 25 26 27 24 29 10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 26 27 24 25 30 11 11 8 9 10 15 12 13 14 3 0 1 2 7 4 5 6 27 24 25 26 31 12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 28 29 30 31 24 13 13 14 15 12 9 10 11 8 5 6 7 4 1 2 3 0 29 30 31 28 25 14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 30 31 28 29 26 15 15 12 13 14 11 8 9 10 7 4 5 6 3 0 1 2 31 28 29 30 27 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 17 17 18 19 16 21 22 23 20 25 26 27 24 29 30 31 28 1 2 3 0 5 18 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29 2 3 0 1 6 19 19 16 17 18 23 20 21 22 27 24 25 26 31 28 29 30 3 0 1 2 7 20 20 21 22 23 16 17 18 19 28 29 30 31 24 25 26 27 4 5 6 7 0 G((x, y)) = mod(x + y, 4) + 4(b x 4 c b y 4 c)
දͷGrundy͔Β ΛҾ͘ͱ ... + y, 4) + 4(b x 4
c b y 4 c)
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 4 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 5 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 6 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 7 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 8 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 9 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 10 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 11 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 12 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 13 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 14 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 15 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 16 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 17 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 18 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 19 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 20 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0
G((x, y)) = mod(x + y, p) + p(b x
p c b y p c) p-2 p-2
ੴऔΓήʔϜͷ߹ɺ ยํ͔ΒͳΒ͍ͭ͘ͰͱͬͯΑ͍ɻ ྆ํ͔ΒͳΒɺ࠷େp-1·ͰͳΒͱͬͯΑ͍ɻ x y x-m y-n ( m+n ≤
p-1 )
࣍ʹɺGrundyͷද͔Βɺ ΛҾ͍ͨͱ͖ʹɺGrundy͕पظੑΛ࣋ͭ ߹Λߟ͑ͨɻ p(b x p c b y p
c)
None
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 2 2 3 4 5 0 1 8 9 10 11 6 7 14 15 16 17 12 13 20 21 22 3 3 2 5 4 1 0 9 8 11 10 7 6 15 14 17 16 13 12 21 20 23 4 4 5 0 1 2 3 10 11 6 7 8 9 16 17 12 13 14 15 22 23 18 5 5 4 1 0 3 2 11 10 7 6 9 8 17 16 13 12 15 14 23 22 19 6 6 7 8 9 10 11 0 1 2 3 4 5 18 19 20 21 22 23 12 13 14 7 7 6 9 8 11 10 1 0 3 2 5 4 19 18 21 20 23 22 13 12 15 8 8 9 10 11 6 7 2 3 4 5 0 1 20 21 22 23 18 19 14 15 16 9 9 8 11 10 7 6 3 2 5 4 1 0 21 20 23 22 19 18 15 14 17 10 10 11 6 7 8 9 4 5 0 1 2 3 22 23 18 19 20 21 16 17 12 11 11 10 7 6 9 8 5 4 1 0 3 2 23 22 19 18 21 20 17 16 13 12 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 13 13 12 15 14 17 16 19 18 21 20 23 22 1 0 3 2 5 4 7 6 9 14 14 15 16 17 12 13 20 21 22 23 18 19 2 3 4 5 0 1 8 9 10 15 15 14 17 16 13 12 21 20 23 22 19 18 3 2 5 4 1 0 9 8 11 16 16 17 12 13 14 15 22 23 18 19 20 21 4 5 0 1 2 3 10 11 6 17 17 16 13 12 15 14 23 22 19 18 21 20 5 4 1 0 3 2 11 10 7 18 18 19 20 21 22 23 12 13 14 15 16 17 6 7 8 9 10 11 0 1 2 19 19 18 21 20 23 22 13 12 15 14 17 16 7 6 9 8 11 10 1 0 3 20 20 21 22 23 18 19 14 15 16 17 12 13 8 9 10 11 6 7 2 3 4
දͷGrundy͔Β ΛҾ͘ͱ ... 6(b x 6 c b y 6
c)
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 1 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 3 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 5 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 6 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 7 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 8 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 9 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 10 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 11 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 12 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 13 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 14 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 15 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 16 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 17 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 18 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 19 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 20 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 1 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 2 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 3 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 4 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 5 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 6 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 7 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 8 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 9 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 10 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 11 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 12 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 13 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 14 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 15 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 G((x, y)) = mod(x + y, 6) + 6(b x 6 c b y 6 c)
0 1 2 3 4 5 1 2 3 4
5 0 2 3 4 5 0 1 3 4 5 0 1 2 4 5 0 1 2 3 5 0 1 2 3 4 ̍पظΛऔΓग़͢ͱ͜ͷΑ͏ʹͳ͍ͬͯΔɻ G((x, y)) = mod(x + y, 6) + 6(b x 6 c b y 6 c)
0 1 2 3 4 5 1 2 3 4
5 0 2 3 4 5 0 1 3 4 5 0 1 2 4 5 0 1 2 3 5 0 1 2 3 4
0 1 2 3 4 5 1 0 3 2
5 4 2 3 4 5 0 1 3 2 5 4 1 0 4 5 0 1 2 3 5 4 1 0 3 2
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 2 0 1 4 5 3 0 1 2 5 3 4 1 2 0
0 1 2 3 4 5 1 0 3 2
5 4 2 3 4 5 0 1 3 2 5 4 1 0 4 5 0 1 2 3 5 4 1 0 3 2 0 1 2 3 4 5 1 2 3 4 5 0 2 3 4 5 0 1 3 4 5 0 1 2 4 5 0 1 2 3 5 0 1 2 3 4 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 2 0 1 4 5 3 0 1 2 5 3 4 1 2 0
None
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 18 19 16 17 22 3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 19 18 17 16 23 4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 20 21 22 23 16 5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 21 20 23 22 17 6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 22 23 20 21 18 7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 24 25 26 27 28 9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 25 24 27 26 29 10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 26 27 24 25 30 11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 27 26 25 24 31 12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 28 29 30 31 24 13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 29 28 31 30 25 14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 30 31 28 29 26 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 17 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30 1 0 3 2 5 18 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29 2 3 0 1 6 19 19 18 17 16 23 22 21 20 27 26 25 24 31 30 29 28 3 2 1 0 7 20 20 21 22 23 16 17 18 19 28 29 30 31 24 25 26 27 4 5 6 7 0 G((x, y)) = (x y)
None
None
ۮݸ
͜ͷΑ͏ʹࣼΊҰྻʹۮݸฒͿͷͷ (SVOEZҎԼͷࣜͰද͢͜ͱ͕Ͱ͖Δ G((x, y)) = x y
None
-1 ݸ Qࣗવ 2p+1
pࣗવ (x, y) (x 2p, y 2p) -1 ݸ 2p+1
2p mod(x, 2p+1) 2p mod(y, 2p+1) x +
y; even ͳΒɺ G((x, y)) = (x y) + 1 G((x, y)) = (x y) 1 ͳΒɺ x + y; odd ͔ͭ Λຬͨ͠ɺ G((x, y)) = (x y) ͦΕҎ֎ͷ߹ɺ
Δ
None
None
None
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 0 3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 1 2 0 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 4 0 3 1 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 1 2 0 3 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 6 0 3 1 2 4 7 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 7 1 2 0 3 5 6 4 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 0 3 1 2 4 7 5 6 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 1 2 0 3 5 6 4 7 9 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10 0 3 1 2 4 7 5 6 8 11 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 11 1 2 0 3 5 6 4 7 9 10 8 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 12 0 3 1 2 4 7 5 6 8 11 9 10 12 13 12 13 12 13 12 13 12 13 12 13 12 13 13 1 2 0 3 5 6 4 7 9 10 8 11 13 14 15 14 15 14 15 14 15 14 15 14 15 14 14 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 12 13 12 13 12 13 12 13 12 13 12 15 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 14 15 14 15 14 15 14 15 14 15 16 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 17 16 17 16 17 16 17 16 17 17 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 19 18 19 18 19 18 19 18 18 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 16 17 16 17 16 17 16 19 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 18 19 18 19 18 19 20 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 21 20 21 20 21 21 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 23 22 23 22 22 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 20 21 20 23 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 23 22 23 24 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 22 24 25 25 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 23 25 26
Grundyͷެࣜ
Corner the “Ryuma”(ཾഅ) problem with pass ਓͰճ͔͠ύε͕͑ͳ͍ ͕ۨ 0,0) ʹߦ͘ͱύεͰ͖ͳ͍
x y
ϓϨΠϠʔ̍ ͷλʔϯ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ̍ ͷλʔϯ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ2 ͷλʔϯ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ2 ͕ύεΛ͏ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ1 ͷλʔϯ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ2 ͷλʔϯ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ2 ͷউͪ Corner the “Ryuma”(ཾഅ) problem with pass
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 1 0 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 1 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 3 0 3 1 4 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 4 1 2 0 3 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 0 3 1 2 4 3 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 1 2 0 3 5 6 7 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 7 0 3 1 2 4 7 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 8 1 2 0 3 5 6 4 7 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 0 3 1 2 4 7 5 6 8 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 1 2 0 3 5 6 4 7 9 10 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 11 0 3 1 2 4 7 5 6 8 11 9 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 12 1 2 0 3 5 6 4 7 9 10 8 11 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 0 3 1 2 4 7 5 6 8 11 9 10 12 15 14 15 14 15 14 15 14 15 14 15 14 15 14 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 13 12 13 12 13 12 13 12 13 12 13 15 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 15 14 15 14 15 14 15 14 15 14 16 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 16 17 16 17 16 17 16 17 16 17 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 18 19 18 19 18 19 18 19 18 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 17 16 17 16 17 16 17 19 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 19 18 19 18 19 18 20 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 20 21 20 21 20 21 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 22 23 22 23 22 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 21 20 21 23 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 22 23 22 24 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 23 25 24 25 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 22 24 27
Grundyͷެࣜ y≤x ͷͱ͖ yʼxͷͱ͖
Corner the “Ryuoh”(ཾԦ) problem with pass 0 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0 0 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 1 2 1 3 0 6 4 8 7 5 9 12 10 14 13 11 15 18 16 20 19 17 21 24 22 26 25 23 27 30 28 32 2 1 3 0 2 4 5 6 9 8 7 10 11 12 15 14 13 16 17 18 21 20 19 22 23 24 27 26 25 28 29 30 3 4 0 2 1 5 3 7 11 6 12 8 9 10 17 16 18 14 13 15 23 22 24 20 19 21 29 28 30 26 25 27 4 3 6 4 5 0 1 2 10 12 8 7 13 15 9 18 11 17 19 14 16 24 20 23 21 22 28 30 26 25 27 31 5 6 4 5 3 1 2 0 12 9 11 13 8 7 10 15 17 19 14 16 18 21 23 25 20 27 24 22 29 31 26 28 6 5 8 6 7 2 0 1 3 4 13 14 15 9 11 12 10 20 21 19 17 16 18 26 27 25 22 29 23 24 32 33 7 8 7 9 11 10 12 3 0 1 2 4 5 6 16 17 14 13 15 22 24 18 25 19 28 20 21 27 31 29 23 26 8 7 5 8 6 12 9 4 1 2 0 11 3 13 19 10 20 22 23 21 14 15 16 17 18 29 31 24 32 34 33 25 9 10 9 7 12 8 11 13 2 0 1 3 4 5 6 20 19 21 24 25 15 23 14 18 16 17 30 32 22 33 31 34 10 9 12 10 8 7 13 14 4 11 3 0 1 2 18 5 6 23 20 26 22 25 15 16 17 19 32 21 24 35 34 36 11 12 10 11 9 13 8 15 5 3 4 1 2 0 7 6 21 24 22 23 25 14 17 27 26 16 18 19 20 32 36 35 12 11 14 12 10 15 7 9 6 13 5 2 0 1 3 4 8 25 26 24 27 28 29 30 31 18 17 16 21 19 20 22 13 14 13 15 17 9 10 11 16 19 6 18 7 3 0 1 2 4 5 8 12 26 27 28 25 30 20 31 33 22 21 23 14 13 11 14 16 18 15 12 17 10 20 5 6 4 1 2 0 7 3 9 26 8 28 29 30 31 19 33 34 21 24 37 15 16 15 13 18 11 17 10 14 20 19 6 21 8 2 0 1 3 4 5 7 9 12 31 32 28 23 34 35 36 22 38 16 15 18 16 14 17 19 20 13 22 21 23 24 25 4 7 3 0 1 2 6 5 8 9 10 11 12 35 36 37 38 39 17 18 16 17 13 19 14 21 15 23 24 20 22 26 5 3 4 1 2 0 8 7 6 10 11 9 33 36 12 38 35 40 18 17 20 18 15 14 16 19 22 21 25 26 23 24 8 9 5 2 0 1 3 4 10 7 6 12 11 13 37 39 40 41 19 20 19 21 23 16 18 17 24 14 15 22 25 27 12 26 7 6 8 3 0 1 2 4 5 10 9 37 11 13 41 42 20 19 17 20 22 24 21 16 18 15 23 25 14 28 26 8 9 5 7 4 1 2 0 6 3 13 34 10 38 12 11 43 21 22 21 19 24 20 23 18 25 16 14 15 17 29 27 28 12 8 6 10 2 0 1 3 4 5 7 9 13 11 37 44 22 21 24 22 20 23 25 26 19 17 18 16 27 30 28 29 31 9 10 7 4 6 3 0 1 2 8 5 14 15 12 11 23 24 22 23 19 21 20 27 28 18 16 17 26 31 25 30 32 10 11 6 5 3 4 1 2 0 13 7 8 9 14 15 24 23 26 24 21 22 27 25 20 29 17 19 16 18 30 31 28 11 9 12 10 13 5 2 0 1 3 4 6 7 8 45 25 26 25 27 29 28 24 22 21 31 30 32 18 17 20 19 23 12 33 11 9 34 7 8 13 3 0 1 2 4 5 6 26 25 23 26 28 30 22 29 27 24 32 21 19 16 31 33 34 35 36 13 37 10 9 5 7 4 1 2 0 6 3 12 27 28 27 25 30 26 29 23 31 32 22 24 20 21 33 34 35 36 12 37 11 38 13 14 8 6 2 0 1 3 4 5
Grundyͷۮحੑ
ཾԦ(ඈं)ͷGrundy
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16 17 15 19 20 18 22 23 21 25 26 2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17 15 16 20 18 19 23 21 22 26 24 3 3 4 5 0 1 2 9 10 11 6 7 8 15 16 17 12 13 14 21 22 23 18 19 20 27 28 4 4 5 3 1 2 0 10 11 9 7 8 6 16 17 15 13 14 12 22 23 21 19 20 18 28 29 5 5 3 4 2 0 1 11 9 10 8 6 7 17 15 16 14 12 13 23 21 22 20 18 19 29 27 6 6 7 8 9 10 11 0 1 2 3 4 5 18 19 20 21 22 23 12 13 14 15 16 17 30 31 7 7 8 6 10 11 9 1 2 0 4 5 3 19 20 18 22 23 21 13 14 12 16 17 15 31 32 8 8 6 7 11 9 10 2 0 1 5 3 4 20 18 19 23 21 22 14 12 13 17 15 16 32 30 9 9 10 11 6 7 8 3 4 5 0 1 2 21 22 23 18 19 20 15 16 17 12 13 14 33 34 10 10 11 9 7 8 6 4 5 3 1 2 0 22 23 21 19 20 18 16 17 15 13 14 12 34 35 11 11 9 10 8 6 7 5 3 4 2 0 1 23 21 22 20 18 19 17 15 16 14 12 13 35 33 12 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 36 37 13 13 14 12 16 17 15 19 20 18 22 23 21 1 2 0 4 5 3 7 8 6 10 11 9 37 38 14 14 12 13 17 15 16 20 18 19 23 21 22 2 0 1 5 3 4 8 6 7 11 9 10 38 36 15 15 16 17 12 13 14 21 22 23 18 19 20 3 4 5 0 1 2 9 10 11 6 7 8 39 40 16 16 17 15 13 14 12 22 23 21 19 20 18 4 5 3 1 2 0 10 11 9 7 8 6 40 41 17 17 15 16 14 12 13 23 21 22 20 18 19 5 3 4 2 0 1 11 9 10 8 6 7 41 39 18 18 19 20 21 22 23 12 13 14 15 16 17 6 7 8 9 10 11 0 1 2 3 4 5 42 43 19 19 20 18 22 23 21 13 14 12 16 17 15 7 8 6 10 11 9 1 2 0 4 5 3 43 44 20 20 18 19 23 21 22 14 12 13 17 15 16 8 6 7 11 9 10 2 0 1 5 3 4 44 42 21 21 22 23 18 19 20 15 16 17 12 13 14 9 10 11 6 7 8 3 4 5 0 1 2 45 46 22 22 23 21 19 20 18 16 17 15 13 14 12 10 11 9 7 8 6 4 5 3 1 2 0 46 47 23 23 21 22 20 18 19 17 15 16 14 12 13 11 9 10 8 6 7 5 3 4 2 0 1 47 45 24 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 0 1 25 25 26 24 28 29 27 31 32 30 34 35 33 37 38 36 40 41 39 43 44 42 46 47 45 1 2
ཾഅ(֯ߦ)ͷGrundy
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 0 3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 1 2 0 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 4 0 3 1 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 1 2 0 3 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 6 0 3 1 2 4 7 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 7 1 2 0 3 5 6 4 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 0 3 1 2 4 7 5 6 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 1 2 0 3 5 6 4 7 9 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10 0 3 1 2 4 7 5 6 8 11 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 11 1 2 0 3 5 6 4 7 9 10 8 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 12 0 3 1 2 4 7 5 6 8 11 9 10 12 13 12 13 12 13 12 13 12 13 12 13 12 13 13 1 2 0 3 5 6 4 7 9 10 8 11 13 14 15 14 15 14 15 14 15 14 15 14 15 14 14 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 12 13 12 13 12 13 12 13 12 13 12 15 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 14 15 14 15 14 15 14 15 14 15 16 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 17 16 17 16 17 16 17 16 17 17 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 19 18 19 18 19 18 19 18 18 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 16 17 16 17 16 17 16 19 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 18 19 18 19 18 19 20 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 21 20 21 20 21 21 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 23 22 23 22 22 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 20 21 20 23 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 23 22 23 24 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 22 24 25 25 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 23 25 26
ۨʹΑͬͯGrundyͷ ۮحੑ͕ҧ͏
None
̎ͭͷήʔϜͷ
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 x y x’ y’
2 3 1 5 x y x’ y’
Grundyɺ5⊕5=0ɹͳͷͰɺ ޙखඞউʹͳΔɻ 0 1 2 3 4 5 1 2
0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 x y x’ y’
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 Grundyɺ5⊕4=1ɹͳͷͰɺ ޙखඞউͰͳ͍ɻ x’ y’ x y
ͭͷήʔϜͷ
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 Grundyɺ6⊕4⊕2=0ɹͳͷͰɺ ޙखඞউʹͳΔɻ 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 Grundyɺ6⊕4⊕0=2ɹͳͷͰɺ ޙखඞউͰͳ͍ɻ 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8
ෳͷ൫໘ʹͳͬͨͱ͖ʹɺ ͦΕͧΕͷ൫໘ͷ(SVOEZͷχϜ ΛௐΔ͜ͱͰޙखඞউ͔Ͳ͏͔͕͔Δ