Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Generalized Ryuoh-Nim: A Variant of the class...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yushi Nakaya
August 16, 2016
Science
0
120
A Generalized Ryuoh-Nim: A Variant of the classical game of Wythoff Nim
情報処理学会 第36回ゲーム情報学研究会にて.この発表にて,若手奨励賞を受賞.
Yushi Nakaya
August 16, 2016
Tweet
Share
More Decks by Yushi Nakaya
See All by Yushi Nakaya
WBA LT20201129
ynntech
0
98
全脳アーキテクチャ若手の会 東北支部 第二回LT
ynntech
0
110
Spajam 2018 仙台予選 「DETECTIVE NANAKO」
ynntech
0
140
第5回関東Jamboree
ynntech
0
72
Pascal-like triangle of Russian Roulette @19th meeting with USTB &Tohoku University
ynntech
0
110
ロシアンルーレット式確率ゲームに現れる Pascal-like triangle に関する研究 ~確率的ゲームの美しい規則性~
ynntech
0
110
Pascal-Like Triangles and Fibonacci-Like Sequences
ynntech
0
140
ゲーム理論ってなんだろう?
ynntech
0
72
PDPH既往患者への帝王切開 に対する麻酔法の提案
ynntech
0
110
Other Decks in Science
See All in Science
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
140
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
520
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.6k
Vibecoding for Product Managers
ibknadedeji
0
130
MCMCのR-hatは分散分析である
moricup
0
580
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
21k
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
データベース03: 関係データモデル
trycycle
PRO
1
330
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
880
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
350
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
Ignite の1年間の軌跡
ktombow
0
210
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
174
15k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
290
How to train your dragon (web standard)
notwaldorf
97
6.5k
How to make the Groovebox
asonas
2
1.9k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Optimizing for Happiness
mojombo
379
71k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
230
WENDY [Excerpt]
tessaabrams
9
36k
Practical Orchestrator
shlominoach
191
11k
Documentation Writing (for coders)
carmenintech
77
5.2k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
Transcript
A Generalized Ryuoh - Nim: A Variant of the classical
game of Wythoff Nim த༔ࢿ† ٶࣉྑฏ† Ҫণଇ* ށᅳ༑و† † ֶؔӃߴ෦ * ฌݿڭҭେֶ
ݚڀͷഎܠɾత ɾΈ߹ΘͤήʔϜͷҰछͰ͋ΔੴऔΓήʔϜͷ มछΛݚڀ͍ͯͨ͠ɻ ɾ$PSOFSUIF2VFFO 8ZUIP⒎`T(BNF ͱ͍͏ ͷΛΓɺ͜ΕΛมܗͤͨ͞ͷͰɺ(SVOEZ ɹ͕៉ྷʹͳΔͷΛ୳ͨ͠ɻ
1.ݚڀͷഎܠɾత 2.Corner the “Ryuoh”(ཾԦ) problem 2.1 ήʔϜͷઆ໌ 2.2 Grundy 2.3ͦͷଞಈ͖ΛՃͨ͠߹
3.Corner the “Ryuma”(ཾഅ) problem 4.Corner the “Ryuma”(ཾഅ) problem with pass 5.Grundyͷͭۮحੑ શମͷྲྀΕ
Corner the “Ryuoh”(ཾԦ) problem w ਓ͕ަޓʹνΣε൫্ͷཾԦ ඈं Λಈ͔͢ w ࠨ্ʹ࣋ͬͯߦͬͨϓϨΠϠͷউͪ
Δ Corner the “Ryuoh”(ཾԦ) problem
None
None
None
ϓϨΠϠʔ̍ ͷλʔϯ Corner the “Ryuoh”(ཾԦ) problem
ϓϨΠϠʔ̍ ͷλʔϯ Corner the “Ryuoh”(ཾԦ) problem
ϓϨΠϠʔ ͷλʔϯ Corner the “Ryuoh”(ཾԦ) problem
ϓϨΠϠʔ ͷλʔϯ Corner the “Ryuoh”(ཾԦ) problem
ϓϨΠϠʔ ͷউͪʂʂ Corner the “Ryuoh”(ཾԦ) problem
x y
x y (x,y)=(2,3)
x y (x,y)=(2,3) (x,y)=(2,0) 2 3 2 0 x y
x y (x,y)=(2,3) (x,y)=(1,2) 2 3 1 2 x y
Ҿ͖͚ͳ͠ͷෆภήʔϜͳΒɺ ઌखඞউϙδγϣϯͱ ޙखඞউϙδγϣϯ͕͋Δɻ
ɾ࠷ऴہ໘Λ̌ͱ͢Δɻ ɾͦͷଞͷ(SVOEZߦ͖ઌʹͳ͍࠷খͷඇෛɻ (SVOEZΛఆٛ͢Δ
x y
x y 0ͱఆٛ͢Δ 0
x y 0
x y 0 ߦ͖ઌʹͳ͍ ࠷খͷෛͰͳ͍
x y 0 ࠓճ̌Λআ͘ ࠷খͷෛͰͳ͍
x y 0 Grundy 1ͱͳΔ 1
x y 0 1
x y 0 1 1
x y 0 1 1
x y 0 1 1 ߦ͖ઌʹͳ͍ ࠷খͷෛͰͳ͍
x y 0 1 1 0,1Λআ͘ ࠷খͷෛͰͳ͍
x y 0 1 1 2 Grundy 2ͱͳΔ
x y 0 1
x y 0 1
x y 0 1 2
x y 0 1 2 2 1
x y 0 1 2 2 1 1,2Λআ͘ ࠷খͷෛͰͳ͍
x y 0 1 2 2 1 0
x y 0 1
x y 0 1
x y 0 1 2
x y 0 1 2 2 1
x y 0 1 2 2 1 0
x y 0
x y 0 1 1 2 2 0 2 0
x y 0 1 1 2 2 0 2 0
ߦ͖ઌʹͳ͍ ࠷খͷෛͰͳ͍
x y 0 1 1 2 2 0 2 0
1
G(x,y)=mex ({ G(u,v); (u,v)∈move(x,y)}) ࠷ऴہ໘ͷGrundy0
mex (A) ඇෛͷू߹ A ʹଘࡏ͠ͳ͍࠷খ ͷඇෛ G((x,y))=mex ({ G(u,v);
(u,v)∈move(x,y)})
mex ({0,1,2,3,5}) = G((x,y))=mex ({ G(u,v); (u,v)∈move(x,y)})
mex ({0,1,2,3,5}) = 4 G((x,y))=mex ({ G(u,v); (u,v)∈move(x,y)})
move ((x, y)) (x, y)͔Β ̍खͰߦ͚Δશͯͷ߹ͷू߹ G((x,y))=mex ({ G(u,v);
(u,v)∈move(x,y)})
move ( (2,1) )=((2,0),(1,1),(0,1),(1,0)) x y 0 1 2 1
2 ͔Β̍खͰಈ͚Δ શͯͷ߹ͷू߹
(x,y)ͷ̍खͰͷҠಈઌͷ Grundyʹؚ·Εͳ͍ ࠷খͷෛͰͳ͍ G((x,y))=mex ({ G(u,v); (u,v)∈move(x,y)}) G(x,y)=G(0,0)=0
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 Grundy͕0ͷͱ͜Ζ ޙखඞউϙδγϣϯ
0 1 1 2 2 0 Grundy͕0ͳͷͰɺ ߦ͖ઌʹ0ͳ͍
0 1 1 2 2 0 Grundy͕1ͳͷͰɺ ߦ͖ઌʹ0͕͋Δ 2 0
1
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 ઌख ͷλʔϯ
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 ޙख ͷλʔϯ
ઌख ͷλʔϯ 0 1 2 3 4 5 1 2
0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1
ޙख ͷλʔϯ 0 1 2 3 4 5 1 2
0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1
ޙखͷউͪ 0 1 2 3 4 5 1 2 0
4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1
G((x, y)) = mod(x + y, 3) + 3(b x
3 c b y 3 c) mod(x+y,3)ɺ x+yΛ̏Ͱׂͬͨ༨Γͷ͜ͱɻ b x 3 c x 3 ɺ ͷ෦ͷ͜ͱɻ ɺഉଞతཧͱಉ͡ɻ χϜ
G((x, y)) = mod(x + y, 3) + 3(b x
3 c b y 3 c) mod(x+y,3)ɺ x+yΛ̏Ͱׂͬͨ༨Γͷ͜ͱɻ ɺഉଞతཧͱಉ͡ɻ χϜ b x 3 c x 3 ɺ ͷ෦ͷ͜ͱɻ
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16 17 15 19 20 18 2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17 15 16 20 18 19 3 3 4 5 0 1 2 9 10 11 6 7 8 15 16 17 12 13 14 21 22 23 4 4 5 3 1 2 0 10 11 9 7 8 6 16 17 15 13 14 12 22 23 21 5 5 3 4 2 0 1 11 9 10 8 6 7 17 15 16 14 12 13 23 21 22 6 6 7 8 9 10 11 0 1 2 3 4 5 18 19 20 21 22 23 12 13 14 7 7 8 6 10 11 9 1 2 0 4 5 3 19 20 18 22 23 21 13 14 12 8 8 6 7 11 9 10 2 0 1 5 3 4 20 18 19 23 21 22 14 12 13 9 9 10 11 6 7 8 3 4 5 0 1 2 21 22 23 18 19 20 15 16 17 10 10 11 9 7 8 6 4 5 3 1 2 0 22 23 21 19 20 18 16 17 15 11 11 9 10 8 6 7 5 3 4 2 0 1 23 21 22 20 18 19 17 15 16 12 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 13 13 14 12 16 17 15 19 20 18 22 23 21 1 2 0 4 5 3 7 8 6 14 14 12 13 17 15 16 20 18 19 23 21 22 2 0 1 5 3 4 8 6 7 15 15 16 17 12 13 14 21 22 23 18 19 20 3 4 5 0 1 2 9 10 11 16 16 17 15 13 14 12 22 23 21 19 20 18 4 5 3 1 2 0 10 11 9 17 17 15 16 14 12 13 23 21 22 20 18 19 5 3 4 2 0 1 11 9 10 18 18 19 20 21 22 23 12 13 14 15 16 17 6 7 8 9 10 11 0 1 2 19 19 20 18 22 23 21 13 14 12 16 17 15 7 8 6 10 11 9 1 2 0 20 20 18 19 23 21 22 14 12 13 17 15 16 8 6 7 11 9 10 2 0 1 G((x, y)) = mod(x + y, 3) + 3(b x 3 c b y 3 c)
G((x, y)) = mod(x + y, 3) + 3(b x
3 c b y 3 c) "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 17 18 19 20 "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 17 18 19 20
G((x, y)) = mod(x + y, 3) + 3(b x
3 c b y 3 c) "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 "" 0 1 2 3 4 5 6 7 8 9 10 11 0 0 1 2 0 1 2 0 1 2 0 1 2 1 1 2 0 1 2 0 1 2 0 1 2 0 2 2 0 1 2 0 1 2 0 1 2 0 1 3 0 1 2 0 1 2 0 1 2 0 1 2 4 1 2 0 1 2 0 1 2 0 1 2 0 5 2 0 1 2 0 1 2 0 1 2 0 1 6 0 1 2 0 1 2 0 1 2 0 1 2 7 1 2 0 1 2 0 1 2 0 1 2 0 8 2 0 1 2 0 1 2 0 1 2 0 1 9 0 1 2 0 1 2 0 1 2 0 1 2 10 1 2 0 1 2 0 1 2 0 1 2 0 11 2 0 1 2 0 1 2 0 1 2 0 1 0 1 2 0 1 2 3 +3(2 3)
G((x, y)) = mod(x + y, 3) + 3(b x
3 c b y 3 c) "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 17 18 19 20 "" 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 1 1 2 0 4 5 3 7 8 6 2 2 0 1 5 3 4 8 6 7 3 3 4 5 0 1 2 9 10 11 4 4 5 3 1 2 0 10 11 9 5 5 3 4 2 0 1 11 9 10 6 6 7 8 9 10 11 0 1 2 7 7 8 6 10 11 9 1 2 0 8 8 6 7 11 9 10 2 0 1 9 9 10 11 6 7 8 3 4 5 10 10 11 9 7 8 6 4 5 3 11 11 9 10 8 6 7 5 3 4 12 13 14 15 16 17 18 19 20
දͷGrundy͔Β ΛҾ͘ͱ ... + y, 3) + 3(b x 3
c b y 3 c)
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 1 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 2 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 4 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 5 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 6 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 7 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 8 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 9 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 10 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 11 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 12 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 13 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 14 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 15 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 16 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 17 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 18 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 19 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 20 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1
None
None
Out[45]= 0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 2 3 0 5 6 7 4 9 10 11 8 13 14 15 12 17 18 19 16 21 2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 18 19 16 17 22 3 3 0 1 2 7 4 5 6 11 8 9 10 15 12 13 14 19 16 17 18 23 4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 20 21 22 23 16 5 5 6 7 4 1 2 3 0 13 14 15 12 9 10 11 8 21 22 23 20 17 6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 22 23 20 21 18 7 7 4 5 6 3 0 1 2 15 12 13 14 11 8 9 10 23 20 21 22 19 8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 24 25 26 27 28 9 9 10 11 8 13 14 15 12 1 2 3 0 5 6 7 4 25 26 27 24 29 10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 26 27 24 25 30 11 11 8 9 10 15 12 13 14 3 0 1 2 7 4 5 6 27 24 25 26 31 12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 28 29 30 31 24 13 13 14 15 12 9 10 11 8 5 6 7 4 1 2 3 0 29 30 31 28 25 14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 30 31 28 29 26 15 15 12 13 14 11 8 9 10 7 4 5 6 3 0 1 2 31 28 29 30 27 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 17 17 18 19 16 21 22 23 20 25 26 27 24 29 30 31 28 1 2 3 0 5 18 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29 2 3 0 1 6 19 19 16 17 18 23 20 21 22 27 24 25 26 31 28 29 30 3 0 1 2 7 20 20 21 22 23 16 17 18 19 28 29 30 31 24 25 26 27 4 5 6 7 0 G((x, y)) = mod(x + y, 4) + 4(b x 4 c b y 4 c)
දͷGrundy͔Β ΛҾ͘ͱ ... + y, 4) + 4(b x 4
c b y 4 c)
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 4 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 5 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 6 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 7 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 8 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 9 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 10 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 11 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 12 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 13 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 14 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 15 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 16 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 17 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 18 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 19 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 20 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0
G((x, y)) = mod(x + y, p) + p(b x
p c b y p c) p-2 p-2
ੴऔΓήʔϜͷ߹ɺ ยํ͔ΒͳΒ͍ͭ͘ͰͱͬͯΑ͍ɻ ྆ํ͔ΒͳΒɺ࠷େp-1·ͰͳΒͱͬͯΑ͍ɻ x y x-m y-n ( m+n ≤
p-1 )
࣍ʹɺGrundyͷද͔Βɺ ΛҾ͍ͨͱ͖ʹɺGrundy͕पظੑΛ࣋ͭ ߹Λߟ͑ͨɻ p(b x p c b y p
c)
None
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 2 2 3 4 5 0 1 8 9 10 11 6 7 14 15 16 17 12 13 20 21 22 3 3 2 5 4 1 0 9 8 11 10 7 6 15 14 17 16 13 12 21 20 23 4 4 5 0 1 2 3 10 11 6 7 8 9 16 17 12 13 14 15 22 23 18 5 5 4 1 0 3 2 11 10 7 6 9 8 17 16 13 12 15 14 23 22 19 6 6 7 8 9 10 11 0 1 2 3 4 5 18 19 20 21 22 23 12 13 14 7 7 6 9 8 11 10 1 0 3 2 5 4 19 18 21 20 23 22 13 12 15 8 8 9 10 11 6 7 2 3 4 5 0 1 20 21 22 23 18 19 14 15 16 9 9 8 11 10 7 6 3 2 5 4 1 0 21 20 23 22 19 18 15 14 17 10 10 11 6 7 8 9 4 5 0 1 2 3 22 23 18 19 20 21 16 17 12 11 11 10 7 6 9 8 5 4 1 0 3 2 23 22 19 18 21 20 17 16 13 12 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 13 13 12 15 14 17 16 19 18 21 20 23 22 1 0 3 2 5 4 7 6 9 14 14 15 16 17 12 13 20 21 22 23 18 19 2 3 4 5 0 1 8 9 10 15 15 14 17 16 13 12 21 20 23 22 19 18 3 2 5 4 1 0 9 8 11 16 16 17 12 13 14 15 22 23 18 19 20 21 4 5 0 1 2 3 10 11 6 17 17 16 13 12 15 14 23 22 19 18 21 20 5 4 1 0 3 2 11 10 7 18 18 19 20 21 22 23 12 13 14 15 16 17 6 7 8 9 10 11 0 1 2 19 19 18 21 20 23 22 13 12 15 14 17 16 7 6 9 8 11 10 1 0 3 20 20 21 22 23 18 19 14 15 16 17 12 13 8 9 10 11 6 7 2 3 4
දͷGrundy͔Β ΛҾ͘ͱ ... 6(b x 6 c b y 6
c)
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 1 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 3 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 5 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 6 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 7 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 8 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 9 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 10 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 11 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 12 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 13 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 14 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 15 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 16 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 17 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 18 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 19 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 20 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 1 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 2 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 3 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 4 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 5 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 6 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 7 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 8 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 9 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 10 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 11 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 12 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 13 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 14 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 15 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 G((x, y)) = mod(x + y, 6) + 6(b x 6 c b y 6 c)
0 1 2 3 4 5 1 2 3 4
5 0 2 3 4 5 0 1 3 4 5 0 1 2 4 5 0 1 2 3 5 0 1 2 3 4 ̍पظΛऔΓग़͢ͱ͜ͷΑ͏ʹͳ͍ͬͯΔɻ G((x, y)) = mod(x + y, 6) + 6(b x 6 c b y 6 c)
0 1 2 3 4 5 1 2 3 4
5 0 2 3 4 5 0 1 3 4 5 0 1 2 4 5 0 1 2 3 5 0 1 2 3 4
0 1 2 3 4 5 1 0 3 2
5 4 2 3 4 5 0 1 3 2 5 4 1 0 4 5 0 1 2 3 5 4 1 0 3 2
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 2 0 1 4 5 3 0 1 2 5 3 4 1 2 0
0 1 2 3 4 5 1 0 3 2
5 4 2 3 4 5 0 1 3 2 5 4 1 0 4 5 0 1 2 3 5 4 1 0 3 2 0 1 2 3 4 5 1 2 3 4 5 0 2 3 4 5 0 1 3 4 5 0 1 2 4 5 0 1 2 3 5 0 1 2 3 4 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 2 0 1 4 5 3 0 1 2 5 3 4 1 2 0
None
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 18 19 16 17 22 3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 19 18 17 16 23 4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 20 21 22 23 16 5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 21 20 23 22 17 6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 22 23 20 21 18 7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 24 25 26 27 28 9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 25 24 27 26 29 10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 26 27 24 25 30 11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 27 26 25 24 31 12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 28 29 30 31 24 13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 29 28 31 30 25 14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 30 31 28 29 26 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 17 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30 1 0 3 2 5 18 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29 2 3 0 1 6 19 19 18 17 16 23 22 21 20 27 26 25 24 31 30 29 28 3 2 1 0 7 20 20 21 22 23 16 17 18 19 28 29 30 31 24 25 26 27 4 5 6 7 0 G((x, y)) = (x y)
None
None
ۮݸ
͜ͷΑ͏ʹࣼΊҰྻʹۮݸฒͿͷͷ (SVOEZҎԼͷࣜͰද͢͜ͱ͕Ͱ͖Δ G((x, y)) = x y
None
-1 ݸ Qࣗવ 2p+1
pࣗવ (x, y) (x 2p, y 2p) -1 ݸ 2p+1
2p mod(x, 2p+1) 2p mod(y, 2p+1) x +
y; even ͳΒɺ G((x, y)) = (x y) + 1 G((x, y)) = (x y) 1 ͳΒɺ x + y; odd ͔ͭ Λຬͨ͠ɺ G((x, y)) = (x y) ͦΕҎ֎ͷ߹ɺ
Δ
None
None
None
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 0 3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 1 2 0 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 4 0 3 1 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 1 2 0 3 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 6 0 3 1 2 4 7 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 7 1 2 0 3 5 6 4 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 0 3 1 2 4 7 5 6 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 1 2 0 3 5 6 4 7 9 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10 0 3 1 2 4 7 5 6 8 11 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 11 1 2 0 3 5 6 4 7 9 10 8 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 12 0 3 1 2 4 7 5 6 8 11 9 10 12 13 12 13 12 13 12 13 12 13 12 13 12 13 13 1 2 0 3 5 6 4 7 9 10 8 11 13 14 15 14 15 14 15 14 15 14 15 14 15 14 14 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 12 13 12 13 12 13 12 13 12 13 12 15 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 14 15 14 15 14 15 14 15 14 15 16 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 17 16 17 16 17 16 17 16 17 17 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 19 18 19 18 19 18 19 18 18 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 16 17 16 17 16 17 16 19 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 18 19 18 19 18 19 20 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 21 20 21 20 21 21 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 23 22 23 22 22 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 20 21 20 23 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 23 22 23 24 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 22 24 25 25 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 23 25 26
Grundyͷެࣜ
Corner the “Ryuma”(ཾഅ) problem with pass ਓͰճ͔͠ύε͕͑ͳ͍ ͕ۨ 0,0) ʹߦ͘ͱύεͰ͖ͳ͍
x y
ϓϨΠϠʔ̍ ͷλʔϯ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ̍ ͷλʔϯ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ2 ͷλʔϯ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ2 ͕ύεΛ͏ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ1 ͷλʔϯ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ2 ͷλʔϯ Corner the “Ryuma”(ཾഅ) problem with pass
ϓϨΠϠʔ2 ͷউͪ Corner the “Ryuma”(ཾഅ) problem with pass
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 1 0 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 1 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 3 0 3 1 4 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 4 1 2 0 3 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 0 3 1 2 4 3 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 1 2 0 3 5 6 7 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 7 0 3 1 2 4 7 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 8 1 2 0 3 5 6 4 7 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 0 3 1 2 4 7 5 6 8 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 1 2 0 3 5 6 4 7 9 10 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 11 0 3 1 2 4 7 5 6 8 11 9 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 12 1 2 0 3 5 6 4 7 9 10 8 11 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 0 3 1 2 4 7 5 6 8 11 9 10 12 15 14 15 14 15 14 15 14 15 14 15 14 15 14 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 13 12 13 12 13 12 13 12 13 12 13 15 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 15 14 15 14 15 14 15 14 15 14 16 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 16 17 16 17 16 17 16 17 16 17 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 18 19 18 19 18 19 18 19 18 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 17 16 17 16 17 16 17 19 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 19 18 19 18 19 18 20 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 20 21 20 21 20 21 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 22 23 22 23 22 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 21 20 21 23 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 22 23 22 24 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 23 25 24 25 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 22 24 27
Grundyͷެࣜ y≤x ͷͱ͖ yʼxͷͱ͖
Corner the “Ryuoh”(ཾԦ) problem with pass 0 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0 0 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 1 2 1 3 0 6 4 8 7 5 9 12 10 14 13 11 15 18 16 20 19 17 21 24 22 26 25 23 27 30 28 32 2 1 3 0 2 4 5 6 9 8 7 10 11 12 15 14 13 16 17 18 21 20 19 22 23 24 27 26 25 28 29 30 3 4 0 2 1 5 3 7 11 6 12 8 9 10 17 16 18 14 13 15 23 22 24 20 19 21 29 28 30 26 25 27 4 3 6 4 5 0 1 2 10 12 8 7 13 15 9 18 11 17 19 14 16 24 20 23 21 22 28 30 26 25 27 31 5 6 4 5 3 1 2 0 12 9 11 13 8 7 10 15 17 19 14 16 18 21 23 25 20 27 24 22 29 31 26 28 6 5 8 6 7 2 0 1 3 4 13 14 15 9 11 12 10 20 21 19 17 16 18 26 27 25 22 29 23 24 32 33 7 8 7 9 11 10 12 3 0 1 2 4 5 6 16 17 14 13 15 22 24 18 25 19 28 20 21 27 31 29 23 26 8 7 5 8 6 12 9 4 1 2 0 11 3 13 19 10 20 22 23 21 14 15 16 17 18 29 31 24 32 34 33 25 9 10 9 7 12 8 11 13 2 0 1 3 4 5 6 20 19 21 24 25 15 23 14 18 16 17 30 32 22 33 31 34 10 9 12 10 8 7 13 14 4 11 3 0 1 2 18 5 6 23 20 26 22 25 15 16 17 19 32 21 24 35 34 36 11 12 10 11 9 13 8 15 5 3 4 1 2 0 7 6 21 24 22 23 25 14 17 27 26 16 18 19 20 32 36 35 12 11 14 12 10 15 7 9 6 13 5 2 0 1 3 4 8 25 26 24 27 28 29 30 31 18 17 16 21 19 20 22 13 14 13 15 17 9 10 11 16 19 6 18 7 3 0 1 2 4 5 8 12 26 27 28 25 30 20 31 33 22 21 23 14 13 11 14 16 18 15 12 17 10 20 5 6 4 1 2 0 7 3 9 26 8 28 29 30 31 19 33 34 21 24 37 15 16 15 13 18 11 17 10 14 20 19 6 21 8 2 0 1 3 4 5 7 9 12 31 32 28 23 34 35 36 22 38 16 15 18 16 14 17 19 20 13 22 21 23 24 25 4 7 3 0 1 2 6 5 8 9 10 11 12 35 36 37 38 39 17 18 16 17 13 19 14 21 15 23 24 20 22 26 5 3 4 1 2 0 8 7 6 10 11 9 33 36 12 38 35 40 18 17 20 18 15 14 16 19 22 21 25 26 23 24 8 9 5 2 0 1 3 4 10 7 6 12 11 13 37 39 40 41 19 20 19 21 23 16 18 17 24 14 15 22 25 27 12 26 7 6 8 3 0 1 2 4 5 10 9 37 11 13 41 42 20 19 17 20 22 24 21 16 18 15 23 25 14 28 26 8 9 5 7 4 1 2 0 6 3 13 34 10 38 12 11 43 21 22 21 19 24 20 23 18 25 16 14 15 17 29 27 28 12 8 6 10 2 0 1 3 4 5 7 9 13 11 37 44 22 21 24 22 20 23 25 26 19 17 18 16 27 30 28 29 31 9 10 7 4 6 3 0 1 2 8 5 14 15 12 11 23 24 22 23 19 21 20 27 28 18 16 17 26 31 25 30 32 10 11 6 5 3 4 1 2 0 13 7 8 9 14 15 24 23 26 24 21 22 27 25 20 29 17 19 16 18 30 31 28 11 9 12 10 13 5 2 0 1 3 4 6 7 8 45 25 26 25 27 29 28 24 22 21 31 30 32 18 17 20 19 23 12 33 11 9 34 7 8 13 3 0 1 2 4 5 6 26 25 23 26 28 30 22 29 27 24 32 21 19 16 31 33 34 35 36 13 37 10 9 5 7 4 1 2 0 6 3 12 27 28 27 25 30 26 29 23 31 32 22 24 20 21 33 34 35 36 12 37 11 38 13 14 8 6 2 0 1 3 4 5
Grundyͷۮحੑ
ཾԦ(ඈं)ͷGrundy
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16 17 15 19 20 18 22 23 21 25 26 2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17 15 16 20 18 19 23 21 22 26 24 3 3 4 5 0 1 2 9 10 11 6 7 8 15 16 17 12 13 14 21 22 23 18 19 20 27 28 4 4 5 3 1 2 0 10 11 9 7 8 6 16 17 15 13 14 12 22 23 21 19 20 18 28 29 5 5 3 4 2 0 1 11 9 10 8 6 7 17 15 16 14 12 13 23 21 22 20 18 19 29 27 6 6 7 8 9 10 11 0 1 2 3 4 5 18 19 20 21 22 23 12 13 14 15 16 17 30 31 7 7 8 6 10 11 9 1 2 0 4 5 3 19 20 18 22 23 21 13 14 12 16 17 15 31 32 8 8 6 7 11 9 10 2 0 1 5 3 4 20 18 19 23 21 22 14 12 13 17 15 16 32 30 9 9 10 11 6 7 8 3 4 5 0 1 2 21 22 23 18 19 20 15 16 17 12 13 14 33 34 10 10 11 9 7 8 6 4 5 3 1 2 0 22 23 21 19 20 18 16 17 15 13 14 12 34 35 11 11 9 10 8 6 7 5 3 4 2 0 1 23 21 22 20 18 19 17 15 16 14 12 13 35 33 12 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 36 37 13 13 14 12 16 17 15 19 20 18 22 23 21 1 2 0 4 5 3 7 8 6 10 11 9 37 38 14 14 12 13 17 15 16 20 18 19 23 21 22 2 0 1 5 3 4 8 6 7 11 9 10 38 36 15 15 16 17 12 13 14 21 22 23 18 19 20 3 4 5 0 1 2 9 10 11 6 7 8 39 40 16 16 17 15 13 14 12 22 23 21 19 20 18 4 5 3 1 2 0 10 11 9 7 8 6 40 41 17 17 15 16 14 12 13 23 21 22 20 18 19 5 3 4 2 0 1 11 9 10 8 6 7 41 39 18 18 19 20 21 22 23 12 13 14 15 16 17 6 7 8 9 10 11 0 1 2 3 4 5 42 43 19 19 20 18 22 23 21 13 14 12 16 17 15 7 8 6 10 11 9 1 2 0 4 5 3 43 44 20 20 18 19 23 21 22 14 12 13 17 15 16 8 6 7 11 9 10 2 0 1 5 3 4 44 42 21 21 22 23 18 19 20 15 16 17 12 13 14 9 10 11 6 7 8 3 4 5 0 1 2 45 46 22 22 23 21 19 20 18 16 17 15 13 14 12 10 11 9 7 8 6 4 5 3 1 2 0 46 47 23 23 21 22 20 18 19 17 15 16 14 12 13 11 9 10 8 6 7 5 3 4 2 0 1 47 45 24 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 0 1 25 25 26 24 28 29 27 31 32 30 34 35 33 37 38 36 40 41 39 43 44 42 46 47 45 1 2
ཾഅ(֯ߦ)ͷGrundy
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 0 3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 1 2 0 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 4 0 3 1 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 1 2 0 3 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 6 0 3 1 2 4 7 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 7 1 2 0 3 5 6 4 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 0 3 1 2 4 7 5 6 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 1 2 0 3 5 6 4 7 9 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10 0 3 1 2 4 7 5 6 8 11 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 11 1 2 0 3 5 6 4 7 9 10 8 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 12 0 3 1 2 4 7 5 6 8 11 9 10 12 13 12 13 12 13 12 13 12 13 12 13 12 13 13 1 2 0 3 5 6 4 7 9 10 8 11 13 14 15 14 15 14 15 14 15 14 15 14 15 14 14 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 12 13 12 13 12 13 12 13 12 13 12 15 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 14 15 14 15 14 15 14 15 14 15 16 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 17 16 17 16 17 16 17 16 17 17 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 19 18 19 18 19 18 19 18 18 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 16 17 16 17 16 17 16 19 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 18 19 18 19 18 19 20 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 21 20 21 20 21 21 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 23 22 23 22 22 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 20 21 20 23 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 23 22 23 24 0 3 1 2 4 7 5 6 8 11 9 10 12 15 13 14 16 19 17 18 20 23 21 22 24 25 25 1 2 0 3 5 6 4 7 9 10 8 11 13 14 12 15 17 18 16 19 21 22 20 23 25 26
ۨʹΑͬͯGrundyͷ ۮحੑ͕ҧ͏
None
̎ͭͷήʔϜͷ
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 x y x’ y’
2 3 1 5 x y x’ y’
Grundyɺ5⊕5=0ɹͳͷͰɺ ޙखඞউʹͳΔɻ 0 1 2 3 4 5 1 2
0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 0 1 2 4 5 3 1 2 0 5 3 4 2 0 1 x y x’ y’
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 Grundyɺ5⊕4=1ɹͳͷͰɺ ޙखඞউͰͳ͍ɻ x’ y’ x y
ͭͷήʔϜͷ
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 Grundyɺ6⊕4⊕2=0ɹͳͷͰɺ ޙखඞউʹͳΔɻ 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8
0 1 2 3 4 5 1 2 0 4
5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 Grundyɺ6⊕4⊕0=2ɹͳͷͰɺ ޙखඞউͰͳ͍ɻ 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8 0 1 2 3 4 5 1 2 0 4 5 3 2 0 1 5 3 4 3 4 5 6 2 0 4 5 3 2 7 6 5 3 4 0 6 8
ෳͷ൫໘ʹͳͬͨͱ͖ʹɺ ͦΕͧΕͷ൫໘ͷ(SVOEZͷχϜ ΛௐΔ͜ͱͰޙखඞউ͔Ͳ͏͔͕͔Δ