Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML...
Search
Kon
July 19, 2019
Science
1
3.6k
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML package
https://data-engineering.connpass.com/event/136756/
Kon
July 19, 2019
Tweet
Share
More Decks by Kon
See All by Kon
Numerai はいいぞ / An encouragement of Numerai
yohrn
0
2.8k
M5 Forecasting 参加報告 / 143rd place solution of M5 Forecasting Accuracy
yohrn
1
1.3k
AutoML はお好きですか? / 8th place solution of AutoWSL 2019
yohrn
1
3.4k
3rd Place Solution of AutoSpeech 2019
yohrn
0
460
自然言語処理初心者が AutoNLP に挑戦した話 / 8th place solution of AutoNLP 2019
yohrn
0
930
機械学習の再現性 / Enabling Reproducibility in Machine Learning Workshop
yohrn
9
3k
異常検知の評価指標って何を使えばいいの? / Metrics for one-class classification
yohrn
0
7k
35th ICML における異常検知に関する論文紹介 / Deep One-Class Classification
yohrn
0
8.4k
機械学習の公平性と解釈可能性 / Fairness, Interpretability, and Explainability Federation of Workshops
yohrn
5
2.6k
Other Decks in Science
See All in Science
Collective Predictive Coding Hypothesis and Beyond (@Japanese Association for Philosophy of Science, 26th October 2024)
tanichu
0
100
小杉考司(専修大学)
kosugitti
2
640
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
520
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
1.7k
応用心理学Ⅰテキストマイニング講義資料講義編(2024年度)
satocos135
0
130
機械学習 - pandas入門
trycycle
PRO
0
150
mathematics of indirect reciprocity
yohm
1
100
創薬における機械学習技術について
kanojikajino
16
5.1k
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
290
Symfony Console Facelift
chalasr
2
430
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
1.4k
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
300
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
693
190k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
104
19k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
390
Designing for humans not robots
tammielis
252
25k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.7k
Why Our Code Smells
bkeepers
PRO
336
57k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
How to train your dragon (web standard)
notwaldorf
90
6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
178
53k
Transcript
AutoML パッケージの開発を円滑に進めたい データと ML 周辺エンジニアリングを考える会 #2 Jul 19, 2019
Yu Ohori (a.k.a. Kon) NS Solutions Corporation (Apr 2017 -
) • Researcher • Data Science & Infrastructure Technologies • System Research & Development Center • Technology Bureau @Y_oHr_N @Y-oHr-N #SemiSupervisedLearning #AnomalyDetection #DataOps
約 3 ヶ月,同僚 3 名と以下の大会に参加した April 1, 2019 - July
20, 2019 3 任意のデータセットに対 する予測精度を競う大会 https://www.4paradigm.com/competition/kddcup2019
何故参加したか? AutoML 周辺技術の調査 開発力強化 案件利用 4
本大会の内容は? 入力 • 5 つの表形式データセット • スキーマ,関係等が記載されたファイル(右図) 提出物 • 学習,予測を行うコード
制約 • 計算資源:4 vCPUs (16 GB Memory) • 計算時間:数十分程度 評価指標 • AUROC 5
本大会の課題は? 時系列データの扱い • data leak を予防する方法は? • concept drift に対応する方法は?
複数表の扱い • 一対多,多対多で結ばれる表を結合する方法は? 4 つの型の扱い • cat 型を num 型に変換する方法は? • multi-cat 型を num 型に変換する方法は? • time 型を num 型に変換する方法は? 6
Concept drift とは? データを生成する確率分布が時間経過で変化する現象 • cat 型の場合,新規カテゴリの出現が相当 7 Gama, J.,
et al., "A survey on concept drift adaptation," ACM CSUR, 46(4), p. 44, 2014.
結果は? 計算時間超過で失格… 通過チームは 31/161 パッケージの内容は 懇親会でお話します 8
開発中,問題になったことは? コードが煩雑で,予測精度が低下した際にバグを特定できない 9
どうやってこれらの問題を解決したか? Codecov カバレッジを記録 CircleCI テストを実行 Comet.ml 学習結果を記録 開発者 変更を push/PR
GitHub 外部サービスに通知 テスト及び CV スコアの監視を継続的に行い,バグの混入を早急に察知する 10
何故これらのサービスを採用したか? 環境構築の手間を削減できるため • mlflow は自身でサーバを構築する必要がある private リポジトリに無料利用できるため • Travis CI
は課金する必要がある • Code Climate は private リポジトリに利用できない 11
何を学習結果として記録したか? • commit ID • ブランチ名 • 実行日時 • 計算時間
• 標準出力 • 依存関係 • 学習曲線 • CV スコア • ベストパラメータ • 等 12