Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML...
Search
Kon
July 19, 2019
Science
1
3.6k
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML package
https://data-engineering.connpass.com/event/136756/
Kon
July 19, 2019
Tweet
Share
More Decks by Kon
See All by Kon
Numerai はいいぞ / An encouragement of Numerai
yohrn
0
3k
M5 Forecasting 参加報告 / 143rd place solution of M5 Forecasting Accuracy
yohrn
1
1.4k
AutoML はお好きですか? / 8th place solution of AutoWSL 2019
yohrn
1
3.5k
3rd Place Solution of AutoSpeech 2019
yohrn
0
480
自然言語処理初心者が AutoNLP に挑戦した話 / 8th place solution of AutoNLP 2019
yohrn
0
950
機械学習の再現性 / Enabling Reproducibility in Machine Learning Workshop
yohrn
9
3k
異常検知の評価指標って何を使えばいいの? / Metrics for one-class classification
yohrn
0
7.1k
35th ICML における異常検知に関する論文紹介 / Deep One-Class Classification
yohrn
0
8.8k
機械学習の公平性と解釈可能性 / Fairness, Interpretability, and Explainability Federation of Workshops
yohrn
5
2.6k
Other Decks in Science
See All in Science
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
610
2025-06-11-ai_belgium
sofievl
1
150
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
310
SciPyDataJapan 2025
schwalbe10
0
260
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.5k
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
620
サイゼミ用因果推論
lw
1
7.5k
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
240
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
150
研究って何だっけ / What is Research?
ks91
PRO
1
120
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
560
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
120
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
GraphQLとの向き合い方2022年版
quramy
49
14k
Become a Pro
speakerdeck
PRO
29
5.5k
Documentation Writing (for coders)
carmenintech
74
5k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.1k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Music & Morning Musume
bryan
46
6.8k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Thoughts on Productivity
jonyablonski
70
4.8k
Writing Fast Ruby
sferik
628
62k
Transcript
AutoML パッケージの開発を円滑に進めたい データと ML 周辺エンジニアリングを考える会 #2 Jul 19, 2019
Yu Ohori (a.k.a. Kon) NS Solutions Corporation (Apr 2017 -
) • Researcher • Data Science & Infrastructure Technologies • System Research & Development Center • Technology Bureau @Y_oHr_N @Y-oHr-N #SemiSupervisedLearning #AnomalyDetection #DataOps
約 3 ヶ月,同僚 3 名と以下の大会に参加した April 1, 2019 - July
20, 2019 3 任意のデータセットに対 する予測精度を競う大会 https://www.4paradigm.com/competition/kddcup2019
何故参加したか? AutoML 周辺技術の調査 開発力強化 案件利用 4
本大会の内容は? 入力 • 5 つの表形式データセット • スキーマ,関係等が記載されたファイル(右図) 提出物 • 学習,予測を行うコード
制約 • 計算資源:4 vCPUs (16 GB Memory) • 計算時間:数十分程度 評価指標 • AUROC 5
本大会の課題は? 時系列データの扱い • data leak を予防する方法は? • concept drift に対応する方法は?
複数表の扱い • 一対多,多対多で結ばれる表を結合する方法は? 4 つの型の扱い • cat 型を num 型に変換する方法は? • multi-cat 型を num 型に変換する方法は? • time 型を num 型に変換する方法は? 6
Concept drift とは? データを生成する確率分布が時間経過で変化する現象 • cat 型の場合,新規カテゴリの出現が相当 7 Gama, J.,
et al., "A survey on concept drift adaptation," ACM CSUR, 46(4), p. 44, 2014.
結果は? 計算時間超過で失格… 通過チームは 31/161 パッケージの内容は 懇親会でお話します 8
開発中,問題になったことは? コードが煩雑で,予測精度が低下した際にバグを特定できない 9
どうやってこれらの問題を解決したか? Codecov カバレッジを記録 CircleCI テストを実行 Comet.ml 学習結果を記録 開発者 変更を push/PR
GitHub 外部サービスに通知 テスト及び CV スコアの監視を継続的に行い,バグの混入を早急に察知する 10
何故これらのサービスを採用したか? 環境構築の手間を削減できるため • mlflow は自身でサーバを構築する必要がある private リポジトリに無料利用できるため • Travis CI
は課金する必要がある • Code Climate は private リポジトリに利用できない 11
何を学習結果として記録したか? • commit ID • ブランチ名 • 実行日時 • 計算時間
• 標準出力 • 依存関係 • 学習曲線 • CV スコア • ベストパラメータ • 等 12