Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML...
Search
Kon
July 19, 2019
Science
1
3.6k
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML package
https://data-engineering.connpass.com/event/136756/
Kon
July 19, 2019
Tweet
Share
More Decks by Kon
See All by Kon
Numerai はいいぞ / An encouragement of Numerai
yohrn
0
2.7k
M5 Forecasting 参加報告 / 143rd place solution of M5 Forecasting Accuracy
yohrn
1
1.3k
AutoML はお好きですか? / 8th place solution of AutoWSL 2019
yohrn
1
3.4k
3rd Place Solution of AutoSpeech 2019
yohrn
0
450
自然言語処理初心者が AutoNLP に挑戦した話 / 8th place solution of AutoNLP 2019
yohrn
0
920
機械学習の再現性 / Enabling Reproducibility in Machine Learning Workshop
yohrn
9
2.9k
異常検知の評価指標って何を使えばいいの? / Metrics for one-class classification
yohrn
0
6.8k
35th ICML における異常検知に関する論文紹介 / Deep One-Class Classification
yohrn
0
8.1k
機械学習の公平性と解釈可能性 / Fairness, Interpretability, and Explainability Federation of Workshops
yohrn
5
2.6k
Other Decks in Science
See All in Science
2024-06-16-pydata_london
sofievl
0
580
Mechanistic Interpretability の紹介
sohtakahashi
0
490
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
2.6k
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.2k
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
120
butterfly_effect/butterfly_effect_in-house
florets1
1
130
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
240
LIMEを用いた判断根拠の可視化
kentaitakura
0
400
マテリアルズ・インフォマティクスの先端で起きていること / What's Happening at the Cutting Edge of Materials Informatics
snhryt
1
160
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
680
Improving Search @scale with efficient query experimentation @BerlinBuzzwords 2024
searchhub
0
260
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
660
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
The Language of Interfaces
destraynor
155
24k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Making Projects Easy
brettharned
116
6k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Building Your Own Lightsaber
phodgson
104
6.2k
Why Our Code Smells
bkeepers
PRO
335
57k
Measuring & Analyzing Core Web Vitals
bluesmoon
5
210
Fireside Chat
paigeccino
34
3.1k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
360
The Power of CSS Pseudo Elements
geoffreycrofte
74
5.4k
Transcript
AutoML パッケージの開発を円滑に進めたい データと ML 周辺エンジニアリングを考える会 #2 Jul 19, 2019
Yu Ohori (a.k.a. Kon) NS Solutions Corporation (Apr 2017 -
) • Researcher • Data Science & Infrastructure Technologies • System Research & Development Center • Technology Bureau @Y_oHr_N @Y-oHr-N #SemiSupervisedLearning #AnomalyDetection #DataOps
約 3 ヶ月,同僚 3 名と以下の大会に参加した April 1, 2019 - July
20, 2019 3 任意のデータセットに対 する予測精度を競う大会 https://www.4paradigm.com/competition/kddcup2019
何故参加したか? AutoML 周辺技術の調査 開発力強化 案件利用 4
本大会の内容は? 入力 • 5 つの表形式データセット • スキーマ,関係等が記載されたファイル(右図) 提出物 • 学習,予測を行うコード
制約 • 計算資源:4 vCPUs (16 GB Memory) • 計算時間:数十分程度 評価指標 • AUROC 5
本大会の課題は? 時系列データの扱い • data leak を予防する方法は? • concept drift に対応する方法は?
複数表の扱い • 一対多,多対多で結ばれる表を結合する方法は? 4 つの型の扱い • cat 型を num 型に変換する方法は? • multi-cat 型を num 型に変換する方法は? • time 型を num 型に変換する方法は? 6
Concept drift とは? データを生成する確率分布が時間経過で変化する現象 • cat 型の場合,新規カテゴリの出現が相当 7 Gama, J.,
et al., "A survey on concept drift adaptation," ACM CSUR, 46(4), p. 44, 2014.
結果は? 計算時間超過で失格… 通過チームは 31/161 パッケージの内容は 懇親会でお話します 8
開発中,問題になったことは? コードが煩雑で,予測精度が低下した際にバグを特定できない 9
どうやってこれらの問題を解決したか? Codecov カバレッジを記録 CircleCI テストを実行 Comet.ml 学習結果を記録 開発者 変更を push/PR
GitHub 外部サービスに通知 テスト及び CV スコアの監視を継続的に行い,バグの混入を早急に察知する 10
何故これらのサービスを採用したか? 環境構築の手間を削減できるため • mlflow は自身でサーバを構築する必要がある private リポジトリに無料利用できるため • Travis CI
は課金する必要がある • Code Climate は private リポジトリに利用できない 11
何を学習結果として記録したか? • commit ID • ブランチ名 • 実行日時 • 計算時間
• 標準出力 • 依存関係 • 学習曲線 • CV スコア • ベストパラメータ • 等 12