Upgrade to Pro — share decks privately, control downloads, hide ads and more …

35th ICML における異常検知に関する論文紹介 / Deep One-Class Cla...

Kon
August 18, 2018

35th ICML における異常検知に関する論文紹介 / Deep One-Class Classification

Kon

August 18, 2018
Tweet

More Decks by Kon

Other Decks in Science

Transcript

  1. Yu Ohori (a.k.a. Kon) NS Solutions Corporation (Apr 2017 -

    ) • Researcher • Data Science & Infrastructure Technologies • System Research & Development Center • Technology Bureau @Y_oHr_N @Y-oHr-N #SemiSupervisedLearning #AnomalyDetection #DataOps
  2. 35th ICML で採択された異常検知に関する論文は 4 本ある 新規性検知(novelty detection) • Ruff, L.,

    et al., "Deep One-Class Classification" 変化検知(change point detection) • Knoblauch, J., et al., "Spatio-temporal Bayesian On-line Changepoint Detection with Model Selection"c • Mazhar, O., et al., "Bayesian Model Selection for Change Point Detection and Clustering" • Boracchi, G., et al., "QuantTree: Histograms for Change Detection in Multivariate Data Streams" 3
  3. 4

  4. Deep One-Class Classification Ruff, L., Vandermeulen, R., Goernitz, N., Deecke,

    L., Siddiqui, S. A., Binder, A., Müller, E., Kloft, M. In Proceedings of ICML, 2019. 新規性検知に深層学習を「直接的に」用いたお話 https://github.com/lukasruff/Deep-SVDD 5
  5. 既存手法 古典的手法 • One-Class Support Vector Machine (OC-SVM) [Scholkopf+, 2001]

    • Support Vector Data Description (SVDD) [Tax & Duin, 2004] • Kernel Density Estimation (KDE) [Parzen, 1962] • Isolation Forest (IF) [Liu+, 2008] • Local Outlier Factor (LOF) [Breunig+, 2000] 深層学習を用いた手法 • Method using autoencoder or its variants • AnoGAN [Schlegl+, 2017] 7
  6. One-Class Support Vector Machine (OC-SVM) finds a maximum margin hyperplane

    in feature space that best separates the mapped data from the origin Scholkopf, B., et al., "Estimating the Support of a High-Dimensional Distribution," Neural Computation, 13(7), pp. 1443-1471, 2001. 双対問題(dual Problem) 主問題(primal problem) 決定関数(decision function) 8
  7. Support Vector Data Description (SVDD) finds the smallest hypersphere that

    encloses the majority of the data in feature space Tax, D. M., and Duin, R. P., "Support Vector Data Description," Machine learning, 54(1), pp. 45-66, 2004. 双対問題(dual Problem) 主問題(primal problem) 決定関数(decision function) 9
  8. OC-SVM/SVDD vs. Deep SVDD OC-SVM/SVDD (solved via SMO) Deep SVDD

    (solved via SGD or its variants) 時間計算量 標本数に対して二乗時間 標本数(バッチ数)に対して線形時間 空間計算量 SV を保存するため,大きい 訓練標本を保存しないため,小さい 12
  9. 多くの状況で提案手法が 高性能であることを実証 評価実験 Deep SVDD の設定 • batch normalization: True

    • activation: Leaky ReLU • leakiness: 0.1 • weight decay hyperparameter: 10^(-8) • optimizer: Adam • learning rate: 10^(-4), 10^(-5) • beta_1: 0.9 (default) • beta_2: 0.999 (default) • epsilon: 10^(-8) (default) • batch size: 200 • epochs: 150+100 13