Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3 コアタイム 第2回目 ( 2014年11月25日(火) )
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
yoshii25
November 25, 2014
Education
0
74
B3 コアタイム 第2回目 ( 2014年11月25日(火) )
yoshii25
November 25, 2014
Tweet
Share
More Decks by yoshii25
See All by yoshii25
文献紹介 (05/13/2016)
yoshii25
0
120
文献紹介 ( 02/18/2016 )
yoshii25
0
190
文献紹介 ( 2015年7月8日(水) )
yoshii25
0
180
文献紹介 ( 2015年6月10日(水) )
yoshii25
0
190
文献紹介 ( 2015年5月12日(火) )
yoshii25
0
190
文献紹介 ( 2015年4月1日(水) )
yoshii25
0
220
B3 勉強会 第12回目 ( 2015年3月26日(木) )
yoshii25
0
180
B3 勉強会 第10回目 ( 2015年3月13日(金) )
yoshii25
0
180
B3 勉強会 第8回目 ( 2015年2月20日(金) )
yoshii25
0
210
Other Decks in Education
See All in Education
1216
cbtlibrary
0
140
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
PRO
10
11k
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
外国籍エンジニアの挑戦・新卒半年後、気づきと成長の物語
hypebeans
0
740
東大1年生にJulia教えてみた
matsui_528
7
12k
Leveraging LLMs for student feedback in introductory data science courses (Stats Up AI)
minecr
1
180
TinyGoをWebブラウザで動かすための方法+アルファ_20260201
masakiokuda
2
230
2025-12-11 nakanoshima.dev LT
takesection
0
110
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
3.1k
10分で学ぶ すてきなモナド
soukouki
1
150
TeXで変える教育現場
doratex
1
13k
滑空スポーツ講習会2025(実技講習)EMFT講習 実施要領/JSA EMFT 2025 procedure
jsaseminar
0
110
Featured
See All Featured
Technical Leadership for Architectural Decision Making
baasie
2
250
Site-Speed That Sticks
csswizardry
13
1.1k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
120
What's in a price? How to price your products and services
michaelherold
247
13k
Fireside Chat
paigeccino
41
3.8k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
58
50k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
The Pragmatic Product Professional
lauravandoore
37
7.1k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2.1k
Transcript
B3ίΞλΠϜ (201411݄25(Ր)) ʰೖ ࣗવݴޠॲཧʱ ɹɹ1ষ ݴޠॲཧͱPython Ԭٕज़Պֶେֶ ࣗવݴޠॲཧݚڀࣨ B3 ழມ
ܚथ
ςʔϚ
ςʔϚ ❖ PythonͷπʔϧͱςΫχοΫ ❖ NLTKͷ༻ํ๏ ❖ ؆୯ͳ౷ܭॲཧ
Python
Python ❖ Pythonͷར ❖ ߏจҙຯͷཧղ͕ฏқ ❖ จࣈྻΛऔΓѻ͏͕ؔ๛ ❖ Pythonͷಛ ❖
มͷܕͷએݴ͕ෆཁ ❖ ߏจʹΠϯσϯτΛ༻͢Δ https://www.python.org/community/logos/
NLTK
NLTK ❖ ࢺͷλά͚, ߏจղੳ, ςΩε τͷྨͱ͍ͬͨॲཧΛߦ͏Πϯ λʔϑΣΠε ❖ ෳࡶͳΛղͨ͘ΊʹΈ߹Θ ͤΔ͜ͱ͕Ͱ͖Δ࣮
Natural Language Toolkit
༻͢Δલʹ ❖ NLTKͷΠϯϙʔτ ❖ >>> import nltk ❖ ςΩετͷΠϯϙʔτ ❖
>>> from nltk.book import *
NLTKͷػೳ ❖ ςΩετͷݕࡧ ❖ >>> text.concordance(“hoge1”) ❖ >>> text.concordance([“hoge1”, “hoge2”])
❖ ୯ޠΛ͑Δ ❖ >>> text.count(“hoge”)
NLTKͷػೳ ❖ ޠኮΛ͑Δ ❖ >>> len(text) ❖ ޠኮͷऔಘ ❖ >>>
set(text) ❖ ޠኮͷιʔτ ❖ >>> sorted(set(text))
NLTKͷػೳ ❖ ؔͷఆٛ ❖ ྫ) ςΩετͷޠኮͷ๛͞ ❖ >>> def function(text)
: ❖ . . . return len(text) / len(set(text))
Python ͖ͭͮ
Pythonͷػೳ ❖ Ϧετ ❖ ςΩετͳͲΛऩೲ͢ΔྻͷΑ͏ͳͷ. ❖ >>> sent[“hoge1”, “hoge2”, “hoge3”,
“hoge4”]
Ϧετ ❖ Ϧετͷ࿈݁ ❖ >>> sent1[“hoge1”, “hoge2”] + sent2[“hoge3”, “hoge4”]
❖ ϦετͷՃ ❖ >>> sent.append(“hoge”) ❖ εϥΠγϯά ❖ >>> sent[5 : 8]
Pythonͷػೳ ❖ จࣈྻ ❖ Ճࢉ, ࢉͳͲՄೳ. ࿈݁, ׂͷػೳΛ࣋ͭ. ❖ name
= ‘Hoge’
จࣈྻ ❖ จࣈྻͷ࿈݁ ❖ >>> ‘ ‘ .join([‘Hoge1’, ‘Hoge2’]) ❖
จࣈྻͷׂ ❖ >>> ‘Hoge1 Hoge2’.split()
Pythonͷػೳ ❖ ݅ࣜ ❖ ༻๏Cݴޠͱ΄΅ಉ༷. ൣғΛΠϯσϯτͰஅ. ❖ >>> if len(word)
< 5 ❖ . . . print ‘word length is less then 5’
݅ࣜ ❖ ୯ޠൺֱʹ͑Δԋࢉࢠ ❖ s.startswitch(t) s ͕ t Ͱ࢝·Δ͔Ͳ͏͔ ❖
s.endswitch(t) s ͕ t ͰऴΘΔ͔Ͳ͏͔ ❖ t in sɹɹɹɹɹ s ͷதʹ t ؚ͕·ΕΔ͔Ͳ͏͔ ❖ s.islower() s ͷதʹେจࣈؚ͕·Ε͍ͯͳ͍ ❖ s.isupper() s ͷதʹࢠจࣈؚ͕·Ε͍ͯͳ͍ ❖ s.isalpha() s ͷதͷจࣈ͕શͯΞϧϑΝϕοτ͔Ͳ͏͔ ❖ s.isalnum() s ͷதͷจࣈ͕શͯΞϧϑΝϕοτ͘͠ࣈ͔Ͳ͏͔
݅ࣜ ❖ ୯ޠൺֱʹ͑Δԋࢉࢠ ͖ͭͮ ❖ s.isdigit() s ͷதͷจࣈ͕શͯࣈ͔Ͳ͏͔ ❖ s.istitle()
s ͕λΠτϧέʔε͔Ͳ͏͔
Pythonͷػೳ ❖ ݅ذ ❖ ༻๏Cݴޠͱ΄΅ಉ༷. ಉ͘͡ൣғΛΠϯσϯτͰஅ. ❖ >>> for i
in range(10) ❖ . . . print i
؆୯ͳ౷ܭॲཧ
؆୯ͳ౷ܭॲཧ ❖ සग़͢Δ୯ޠΛऔΓग़͢ ❖ >>> fdist1 = FreqDist(text) ❖ ςΩετதͷҟͳΓޠΛऔΓग़͢
❖ >>> vocaburaly1 = fdist1.keys()
؆୯ͳ౷ܭॲཧ ❖ ςΩετͷ༰Λද͢୯ޠΛऔΓग़͍ͨ͠. ❖ → औΓग़ͨ͠୯ޠ͔ΒςΩετͷ༰͕ཧղͰ͖Δʂ
؆୯ͳ౷ܭॲཧ ❖ ‘,’ ‘the’, ‘.’, ‘and’ͳͲจࣈ͕͍୯ޠ͕සग़͢ΔͳΒ, 1ճ͠ ͔ొ͠ͳ͍୯ޠΛ୳ͤΑ͍ͷͰʁ ❖
15จࣈҎ্ͷ୯ޠΛऔΓग़͢ ❖ >>> V = set(text1) ❖ . . . long_words = [w for w in V if len(w) > 15]
؆୯ͳ౷ܭॲཧ ❖ 1ճ͔͠ొ͠ͳ͍୯ޠ,จ຺͔Βཧղ͠ͳ͚ΕͳΒͳ͍୯ޠ͕ ଟ͘, ςΩετͷ༰ཧղͰ͖ͳ͍. ❖ 7จࣈҎ্, 7ճҎ্ొͨ͠୯ޠΛऔΓग़͢ ❖ >>>
fdist5 = FreqDist(text5) ❖ >>> sorted([w for w in set(text5) if len > 7 and fdist5[w] > 7])