Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI アクセラレータチップ AWS Trainium/Inferentia に 今こそ入門
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
yoshimi0227
January 16, 2026
Technology
1
350
AI アクセラレータチップ AWS Trainium/Inferentia に 今こそ入門
【re:Invent 2025アップデート紹介】AI アクセラレータチップAWS Trainium/Inferentia に今こそ入門
yoshimi0227
January 16, 2026
Tweet
Share
More Decks by yoshimi0227
See All by yoshimi0227
【あのMCPって、どんな処理してるの?】 AWS CDKでの開発で便利なAWS MCP Servers特集
yoshimi0227
8
2.2k
AWS re:Invent 2024 re:Cap CloudFront編
yoshimi0227
0
650
[AWS JAPAN 生成AIハッカソン] Dialog の紹介
yoshimi0227
1
2.1k
JAWS PANKRATION 2024 配信システムの紹介
yoshimi0227
0
380
Report of JAWS PANKRATION 2024, a global online event using Amazon IVS
yoshimi0227
1
1.1k
日本発24時間グローバルイベント"JAWS PANKRATION 2024"の紹介
yoshimi0227
1
410
re:Invent2023で登場した運用開発用の可視化ツールたちを実際に見てみよう
yoshimi0227
0
1.1k
Streaming a Seminar - A Guide to Using Amazon IVS and OBS Studio
yoshimi0227
1
500
JAWSで配信してみませんか?
yoshimi0227
1
1.4k
Other Decks in Technology
See All in Technology
セキュリティ はじめの一歩
nikinusu
0
1.5k
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
41k
GCASアップデート(202510-202601)
techniczna
0
250
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
130
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
2
1.9k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
130
生成AI時代にこそ求められるSRE / SRE for Gen AI era
ymotongpoo
5
2.4k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
360
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
1.5k
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
4
4.7k
Databricks Free Edition講座 データサイエンス編
taka_aki
0
290
Featured
See All Featured
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
54
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
650
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.8k
How GitHub (no longer) Works
holman
316
140k
Odyssey Design
rkendrick25
PRO
1
490
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
280
Technical Leadership for Architectural Decision Making
baasie
1
240
Automating Front-end Workflow
addyosmani
1371
200k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Transcript
TRAINIUM AWS re:Invent 2025 re:Cap OpsJAWS#38 2026/1/16 Yoshimi Maehara NEURON
【re:Invent ���� アップデート紹介】 AI アクセラレータチップ AWS Trainium/Inferentia に 今こそ入門
TRAINIUM NEURON 自己紹介 前原 良美(まえはら よしみ) 自社サービスの UIUX 刷新や 運用システム新規整備をしています。
TRAINIUM NEURON はじめに re:Invent ���� - Keynote with CEO Matt
Garman Amazon Bedrock での推論の多くは Trainium によって実行されています
TRAINIUM NEURON AI チップが、今の生成 AI ブームを支えている 何かのサービスに賭けるのであれば、そのサービス自体の持続可能性を見るべし 裏側で動いている Trainium を知ることで、
より Amazon Bedrock や Claude に賭けられるようになる
TRAINIUM NEURON 【補足】 深層学習(DeepLearning)とは 人間の脳の神経細胞(ニューロン)の仕組みを利用した AI であり、大量に学習を行う ことで精度の高い推論を可能にする 本題に入る前に 推論
未学習データ ??? 学習済モデルに未学習データを 投入し、回答を得る 学習済モデル 学習 学習データ ケーキ モデル 学習データを何度も投入し、 モデルの回答精度をあげる 回答をもとに微修正
TRAINIUM NEURON まず、AI チップとは? 深層学習(例:生成 AI モデルの構築)に必要な「膨大な量の演算処理」が高速で可能なチップ CPU start end
順番にソフトウェアの 処理を実施 AI チップ start end 並列でソフトウェア の処理を実施 (=処理時間を短縮) 例:GPU 例:FPGA ハードウェア記述言語 (HDL)を活用 (=ソフトウェアの指示を 実行するより高速) start end
TRAINIUM INFERENTIA NEURON Trainium/Inferentia とは 深層学習(例:生成 AI モデルの構築)の学習・推論をする際の AI チップの選択肢
AWS Inferentia AWS Trainium NVIDIA GPU Intel Gaudi AMD GPU AMD UltraScale+ FPGA Qualcomm Cloud AI • DL�q AI チップ一覧 搭載している EC� インスタンスタイプの例 • Inf� • Inf� • Trn� • Trn�n • Trn� • G�ad • G�dn • G�,G�,G�e, • P�,P� • P�,P�e • P�,P�e • F� • F� • DL�
TRAINIUM NEURON Trainium/Inferentia とは Trainium は学習に向いている AI チップ、Inferentia は推論に向いている AI
チップ として登場 推論 未学習データ ??? 学習済モデルに未学習データを 投入し、回答を得る 学習済モデル 学習 学習データ ケーキ モデル 学習データを何度も投入し、 モデルの回答精度をあげる 回答をもとに微修正
TRAINIUM NEURON Trainium/Inferentia とは Trainium は推論に対しても非常に有用な AI チップであり、実際に推論で使われている
TRAINIUM NEURON Trainium とは 初代 Trainium と Inferentia� は、チップのアーキテクチャ構成はほぼ一緒 https://awsdocs-neuron.readthedocs-hosted.com/en/latest/about-neuron/arch/neuron-hardware/inferentia�.html
TRAINIUM NEURON Trainium とは 学習には特に強いスペックが必要なため、Trainium� にてコアやメモリ、帯域を強化 https://awsdocs-neuron.readthedocs-hosted.com/en/latest/about-neuron/arch/neuron-hardware/trainium.html
TRAINIUM NEURON Trainium とは Trainium� は業界でも高く評価され、Anthropic 社との共同プロジェクト「Project Rainier」で、数十万個が稼働(※UltraServer を用いて稼働) https://www.aboutamazon.com/news/aws/aws-project-rainier-ai-trainium-chips-compute-cluster
Claude の裏でも、Trainium� は活用されている
TRAINIUM NEURON Trainium� 搭載 UltraServer の提供開始 re:invent ���� アップデート https://www.aboutamazon.com/news/aws/trainium-�-ultraserver-faster-ai-training-lower-cost
Trainium� のバージョンアップ版である Trainium� を搭載した UltraServer が登場
TRAINIUM NEURON Trainium� 搭載 UltraServer の提供開始 re:invent ���� アップデート https://awsdocs-neuron.readthedocs-hosted.com/en/latest/about-neuron/arch/neuron-hardware/trainium�.html
Trainium� は Trainium� からさらにコアやメモリ、帯域をスペックアップ
TRAINIUM NEURON Trainium� 搭載 UltraServer の提供開始 re:invent ���� アップデート Trainium�
搭載の UltraServer は、Trainium� 搭載の UltraServer と比べて、下記の通り • コンピューティングの性能が �.� 倍 • AI チップあたりのスループットが � 倍 • 応答時間が � 倍高速化 また、Trainium� は Trainium� と比べて、エネルギー効率が ��% 向上 ⇒ 利用する UltraServer を Trainium� 搭載版から Trainium� 搭載版に変更するだけで 様々な性能があがる https://www.aboutamazon.com/news/aws/trainium-�-ultraserver-faster-ai-training-lower-cost
TRAINIUM NEURON Trainium� 搭載 UltraServer の提供開始 re:invent ���� アップデート OpenAI
社の GPT-OSS モデルにて、UltraServer を Trainium� 搭載版から Trainium� 搭載版に変更するだけでトークン出力効率が � 倍に性能向上
TRAINIUM NEURON Trainium/Inferentia がなんとなくわかったところで どう使えば良いのか、気になりませんか? EC� や SageMaker で該当インスタンスを起動後、 深層学習用のソースコードを実装する必要があります。
TRAINIUM NEURON 【補足】 Pytorch とは 深層学習(例:生成 AI モデルの構築)でモデルを学習・推論するときに便利な Python ライブラリ
本題に入る前に https://docs.pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html モデル 例:学習を開始するにあたり、 まずモデルを作成
TRAINIUM NEURON Trainium が PyTorch をネイティブサポート開始 re:invent ���� アップデート CPU
や GPU 上で実行できる PyTorch のソースコードを、Trainium/Inferentia 上でも そのまま利用できるように(※一箇所 cuda を neuron に変える程度で動く) https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/pytorch-native-overview.html
TRAINIUM NEURON さいごに 他にも、オブザーバビリティツールとして Neuron Explorer や、パフォーマンス最適化の ためのツールとして Neuron Kernel
Interface(NKI)が登場しました。 AI チップ開発にここまで力をいれてくれているからこそ、私たちは安心してガンガン AI を活用できます。 これからも、Trainium/Infrentia を信じて、関連 AI サービスにも賭けていきましょう!