Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI アクセラレータチップ AWS Trainium/Inferentia に 今こそ入門
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
yoshimi0227
January 16, 2026
Technology
1
360
AI アクセラレータチップ AWS Trainium/Inferentia に 今こそ入門
【re:Invent 2025アップデート紹介】AI アクセラレータチップAWS Trainium/Inferentia に今こそ入門
yoshimi0227
January 16, 2026
Tweet
Share
More Decks by yoshimi0227
See All by yoshimi0227
【あのMCPって、どんな処理してるの?】 AWS CDKでの開発で便利なAWS MCP Servers特集
yoshimi0227
8
2.2k
AWS re:Invent 2024 re:Cap CloudFront編
yoshimi0227
0
660
[AWS JAPAN 生成AIハッカソン] Dialog の紹介
yoshimi0227
1
2.1k
JAWS PANKRATION 2024 配信システムの紹介
yoshimi0227
0
390
Report of JAWS PANKRATION 2024, a global online event using Amazon IVS
yoshimi0227
1
1.1k
日本発24時間グローバルイベント"JAWS PANKRATION 2024"の紹介
yoshimi0227
1
410
re:Invent2023で登場した運用開発用の可視化ツールたちを実際に見てみよう
yoshimi0227
0
1.1k
Streaming a Seminar - A Guide to Using Amazon IVS and OBS Studio
yoshimi0227
1
510
JAWSで配信してみませんか?
yoshimi0227
1
1.4k
Other Decks in Technology
See All in Technology
1,000 にも届く AWS Organizations 組織のポリシー運用をちゃんとしたい、という話
kazzpapa3
0
110
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
260
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
400
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
740
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
200
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
600
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
750
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
100
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
160
Agent Skils
dip_tech
PRO
0
130
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
210
Featured
See All Featured
sira's awesome portfolio website redesign presentation
elsirapls
0
150
The Pragmatic Product Professional
lauravandoore
37
7.1k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
200
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
57
50k
Mind Mapping
helmedeiros
PRO
0
90
Accessibility Awareness
sabderemane
0
56
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.6k
Building Applications with DynamoDB
mza
96
6.9k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
340
Transcript
TRAINIUM AWS re:Invent 2025 re:Cap OpsJAWS#38 2026/1/16 Yoshimi Maehara NEURON
【re:Invent ���� アップデート紹介】 AI アクセラレータチップ AWS Trainium/Inferentia に 今こそ入門
TRAINIUM NEURON 自己紹介 前原 良美(まえはら よしみ) 自社サービスの UIUX 刷新や 運用システム新規整備をしています。
TRAINIUM NEURON はじめに re:Invent ���� - Keynote with CEO Matt
Garman Amazon Bedrock での推論の多くは Trainium によって実行されています
TRAINIUM NEURON AI チップが、今の生成 AI ブームを支えている 何かのサービスに賭けるのであれば、そのサービス自体の持続可能性を見るべし 裏側で動いている Trainium を知ることで、
より Amazon Bedrock や Claude に賭けられるようになる
TRAINIUM NEURON 【補足】 深層学習(DeepLearning)とは 人間の脳の神経細胞(ニューロン)の仕組みを利用した AI であり、大量に学習を行う ことで精度の高い推論を可能にする 本題に入る前に 推論
未学習データ ??? 学習済モデルに未学習データを 投入し、回答を得る 学習済モデル 学習 学習データ ケーキ モデル 学習データを何度も投入し、 モデルの回答精度をあげる 回答をもとに微修正
TRAINIUM NEURON まず、AI チップとは? 深層学習(例:生成 AI モデルの構築)に必要な「膨大な量の演算処理」が高速で可能なチップ CPU start end
順番にソフトウェアの 処理を実施 AI チップ start end 並列でソフトウェア の処理を実施 (=処理時間を短縮) 例:GPU 例:FPGA ハードウェア記述言語 (HDL)を活用 (=ソフトウェアの指示を 実行するより高速) start end
TRAINIUM INFERENTIA NEURON Trainium/Inferentia とは 深層学習(例:生成 AI モデルの構築)の学習・推論をする際の AI チップの選択肢
AWS Inferentia AWS Trainium NVIDIA GPU Intel Gaudi AMD GPU AMD UltraScale+ FPGA Qualcomm Cloud AI • DL�q AI チップ一覧 搭載している EC� インスタンスタイプの例 • Inf� • Inf� • Trn� • Trn�n • Trn� • G�ad • G�dn • G�,G�,G�e, • P�,P� • P�,P�e • P�,P�e • F� • F� • DL�
TRAINIUM NEURON Trainium/Inferentia とは Trainium は学習に向いている AI チップ、Inferentia は推論に向いている AI
チップ として登場 推論 未学習データ ??? 学習済モデルに未学習データを 投入し、回答を得る 学習済モデル 学習 学習データ ケーキ モデル 学習データを何度も投入し、 モデルの回答精度をあげる 回答をもとに微修正
TRAINIUM NEURON Trainium/Inferentia とは Trainium は推論に対しても非常に有用な AI チップであり、実際に推論で使われている
TRAINIUM NEURON Trainium とは 初代 Trainium と Inferentia� は、チップのアーキテクチャ構成はほぼ一緒 https://awsdocs-neuron.readthedocs-hosted.com/en/latest/about-neuron/arch/neuron-hardware/inferentia�.html
TRAINIUM NEURON Trainium とは 学習には特に強いスペックが必要なため、Trainium� にてコアやメモリ、帯域を強化 https://awsdocs-neuron.readthedocs-hosted.com/en/latest/about-neuron/arch/neuron-hardware/trainium.html
TRAINIUM NEURON Trainium とは Trainium� は業界でも高く評価され、Anthropic 社との共同プロジェクト「Project Rainier」で、数十万個が稼働(※UltraServer を用いて稼働) https://www.aboutamazon.com/news/aws/aws-project-rainier-ai-trainium-chips-compute-cluster
Claude の裏でも、Trainium� は活用されている
TRAINIUM NEURON Trainium� 搭載 UltraServer の提供開始 re:invent ���� アップデート https://www.aboutamazon.com/news/aws/trainium-�-ultraserver-faster-ai-training-lower-cost
Trainium� のバージョンアップ版である Trainium� を搭載した UltraServer が登場
TRAINIUM NEURON Trainium� 搭載 UltraServer の提供開始 re:invent ���� アップデート https://awsdocs-neuron.readthedocs-hosted.com/en/latest/about-neuron/arch/neuron-hardware/trainium�.html
Trainium� は Trainium� からさらにコアやメモリ、帯域をスペックアップ
TRAINIUM NEURON Trainium� 搭載 UltraServer の提供開始 re:invent ���� アップデート Trainium�
搭載の UltraServer は、Trainium� 搭載の UltraServer と比べて、下記の通り • コンピューティングの性能が �.� 倍 • AI チップあたりのスループットが � 倍 • 応答時間が � 倍高速化 また、Trainium� は Trainium� と比べて、エネルギー効率が ��% 向上 ⇒ 利用する UltraServer を Trainium� 搭載版から Trainium� 搭載版に変更するだけで 様々な性能があがる https://www.aboutamazon.com/news/aws/trainium-�-ultraserver-faster-ai-training-lower-cost
TRAINIUM NEURON Trainium� 搭載 UltraServer の提供開始 re:invent ���� アップデート OpenAI
社の GPT-OSS モデルにて、UltraServer を Trainium� 搭載版から Trainium� 搭載版に変更するだけでトークン出力効率が � 倍に性能向上
TRAINIUM NEURON Trainium/Inferentia がなんとなくわかったところで どう使えば良いのか、気になりませんか? EC� や SageMaker で該当インスタンスを起動後、 深層学習用のソースコードを実装する必要があります。
TRAINIUM NEURON 【補足】 Pytorch とは 深層学習(例:生成 AI モデルの構築)でモデルを学習・推論するときに便利な Python ライブラリ
本題に入る前に https://docs.pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html モデル 例:学習を開始するにあたり、 まずモデルを作成
TRAINIUM NEURON Trainium が PyTorch をネイティブサポート開始 re:invent ���� アップデート CPU
や GPU 上で実行できる PyTorch のソースコードを、Trainium/Inferentia 上でも そのまま利用できるように(※一箇所 cuda を neuron に変える程度で動く) https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/pytorch-native-overview.html
TRAINIUM NEURON さいごに 他にも、オブザーバビリティツールとして Neuron Explorer や、パフォーマンス最適化の ためのツールとして Neuron Kernel
Interface(NKI)が登場しました。 AI チップ開発にここまで力をいれてくれているからこそ、私たちは安心してガンガン AI を活用できます。 これからも、Trainium/Infrentia を信じて、関連 AI サービスにも賭けていきましょう!