Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介][KDD2014]Dynamics of News Events and Soc...
Search
ysekky
April 08, 2015
Research
0
310
[論文紹介][KDD2014]Dynamics of News Events and Social Media Reaction
ysekky
April 08, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.6k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
750
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.7k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.4k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.1k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.9k
Other Decks in Research
See All in Research
ドローンやICTを活用した持続可能なまちづくりに関する研究
nro2daisuke
0
150
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
240
Batch Processing Algorithm for Elliptic Curve Operations and Its AVX-512 Implementation
herumi
0
120
Neural Fieldの紹介
nnchiba
2
700
CoRL2024サーベイ
rpc
1
1.6k
BtoB プロダクトにおけるインサイトマネジメントの必要性 現場ドリブンなカミナシがインサイトマネジメントに取り組むワケ / Why field-driven Kaminashi is working on insight management
kaminashi
0
230
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
330
Tiaccoon: コンテナネットワークにおいて複数トランスポート方式で統一的なアクセス制御
hiroyaonoe
0
430
o1 pro mode の調査レポート
smorce
0
120
ダイナミックプライシング とその実例
skmr2348
3
600
博士学位論文予備審査 / Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining
yuukit
1
1.7k
[輪講] Transformer Layers as Painters
nk35jk
4
690
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
Git: the NoSQL Database
bkeepers
PRO
427
65k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
BBQ
matthewcrist
87
9.5k
Building an army of robots
kneath
303
45k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
370
RailsConf 2023
tenderlove
29
1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Why Our Code Smells
bkeepers
PRO
336
57k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Transcript
[論文紹介] Dynamics of News Events and
Social Media Reac9on Mikalai Tsytsarau*1, Themis Palpanas*2, Malu Castellanos*3 (University of Trento*1, Paris Descartes University*2, HewleJ Pakard*3) KDD 2014 Yoshifumi Seki (Gunosy Inc) 2015.04.07 @Gunosy研究会 #86
概要 • ニュースの波及の様子とその反応についてモ デル化を行う • ニュースの波及について,そのイベントの重 要度とメディアの反応モデルの畳み込みとし て表現することでイベントの重要度を得る
• ニュースの波及と反応にはラグが存在する. 時系列の相関を踏まえることでイベントによっ て反応がどのように変化したのかを捉える.
ニュースの波及について • 青: 検索ボリューム – 常にある程度のボリュームがあり、Eventのインパ クトを見積もるのが難しい • 赤:
提案手法のアウトプット – イベントの影響力を捉えることができている
Modeling News Dynamics • mrf: media response func9on •
e: actual event sequence • n: news volume
media response func9on • h(t): ヘヴィサイドの階段関数
Event importance
News Deconvolu9on • フーリエ逆変換を用いる
Detec9ng Sen9ment Shi\s • Sen9ment Extrac9on – トピックに関連する文書をApache Luceneを用いて 得る
– Sen9Strength Algorithm • hJp://sen9strength.wlv.ac.uk/ • Sen9ment Volume – 文書数(ツイート数)できまる
Detec9ng Sen9ment Shi\s • Contradic9on Level – 意見がわかれている度合い – 平均と分散で測る
– n: number of sen9ments
Correla9ng News and Sen9ments • ピアソンの相関係数 – 線形性を仮定しているので、今回のようなBurstな 変化の相関を捉えるには向いていない
– あるインターバルでバースト(一定以上値が上昇 したかを集合にしてJaccard , Cosine類似度を測る
Experimental Evalua9on • Meme Dataset – top 100 memes 9me
series – approximately 500 peaks – 4 hour aggrega9on • TwiJer – 30 topics(selected) – 7 million tweets, 400 peak during the event – 1 day aggrega9on
Compare Accuracy to Previous Model
Compare Accuracy to Previous Model
Evaluate the Proposed response dynamics
• 映画は事前はPosi9veだが事後にはNega9veなも のが出る • スポーツのような事前に起こることがわかってい るイベントはイベントとの相関が高く出る