Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介][KDD2014]Dynamics of News Events and Soc...
Search
ysekky
April 08, 2015
Research
0
310
[論文紹介][KDD2014]Dynamics of News Events and Social Media Reaction
ysekky
April 08, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
1.9k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.5k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
1.9k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
730
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.6k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.4k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
980
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.2k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.8k
Other Decks in Research
See All in Research
Weekly AI Agents News! 9月号 論文のアーカイブ
masatoto
1
120
「並列化時代の乱数生成」
abap34
3
820
授業評価アンケートのテキストマイニング
langstat
1
360
12
0325
0
190
Generative Predictive Model for Autonomous Driving 第61回 コンピュータビジョン勉強会@関東 (後編)
kentosasaki
0
210
Weekly AI Agents News! 8月号 論文のアーカイブ
masatoto
1
180
さんかくのテスト.pdf
sankaku0724
0
340
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
4
410
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
260
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
120
いしかわ暮らしセミナー~移住にまつわるお金の話~
matyuda
0
150
尺度開発における質的研究アプローチ(自主企画シンポジウム7:認知行動療法における尺度開発のこれから)
litalicolab
0
350
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
The Language of Interfaces
destraynor
154
24k
A Philosophy of Restraint
colly
203
16k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
4 Signs Your Business is Dying
shpigford
180
21k
Ruby is Unlike a Banana
tanoku
97
11k
RailsConf 2023
tenderlove
29
900
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Transcript
[論文紹介] Dynamics of News Events and
Social Media Reac9on Mikalai Tsytsarau*1, Themis Palpanas*2, Malu Castellanos*3 (University of Trento*1, Paris Descartes University*2, HewleJ Pakard*3) KDD 2014 Yoshifumi Seki (Gunosy Inc) 2015.04.07 @Gunosy研究会 #86
概要 • ニュースの波及の様子とその反応についてモ デル化を行う • ニュースの波及について,そのイベントの重 要度とメディアの反応モデルの畳み込みとし て表現することでイベントの重要度を得る
• ニュースの波及と反応にはラグが存在する. 時系列の相関を踏まえることでイベントによっ て反応がどのように変化したのかを捉える.
ニュースの波及について • 青: 検索ボリューム – 常にある程度のボリュームがあり、Eventのインパ クトを見積もるのが難しい • 赤:
提案手法のアウトプット – イベントの影響力を捉えることができている
Modeling News Dynamics • mrf: media response func9on •
e: actual event sequence • n: news volume
media response func9on • h(t): ヘヴィサイドの階段関数
Event importance
News Deconvolu9on • フーリエ逆変換を用いる
Detec9ng Sen9ment Shi\s • Sen9ment Extrac9on – トピックに関連する文書をApache Luceneを用いて 得る
– Sen9Strength Algorithm • hJp://sen9strength.wlv.ac.uk/ • Sen9ment Volume – 文書数(ツイート数)できまる
Detec9ng Sen9ment Shi\s • Contradic9on Level – 意見がわかれている度合い – 平均と分散で測る
– n: number of sen9ments
Correla9ng News and Sen9ments • ピアソンの相関係数 – 線形性を仮定しているので、今回のようなBurstな 変化の相関を捉えるには向いていない
– あるインターバルでバースト(一定以上値が上昇 したかを集合にしてJaccard , Cosine類似度を測る
Experimental Evalua9on • Meme Dataset – top 100 memes 9me
series – approximately 500 peaks – 4 hour aggrega9on • TwiJer – 30 topics(selected) – 7 million tweets, 400 peak during the event – 1 day aggrega9on
Compare Accuracy to Previous Model
Compare Accuracy to Previous Model
Evaluate the Proposed response dynamics
• 映画は事前はPosi9veだが事後にはNega9veなも のが出る • スポーツのような事前に起こることがわかってい るイベントはイベントとの相関が高く出る