Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介][KDD2014]Dynamics of News Events and Soc...
Search
ysekky
April 08, 2015
Research
0
320
[論文紹介][KDD2014]Dynamics of News Events and Social Media Reaction
ysekky
April 08, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.1k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.7k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
760
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.8k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.1k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.9k
Other Decks in Research
See All in Research
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
370
SI-D案内資料_京都文教大学
ryojitakeuchi1116
0
1.6k
VAGeo: View-specific Attention for Cross-View Object Geo-Localization
satai
3
370
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
810
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
890
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
930
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
170
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
6
1k
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
200
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
200
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
210
Featured
See All Featured
Statistics for Hackers
jakevdp
799
220k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.8k
VelocityConf: Rendering Performance Case Studies
addyosmani
330
24k
Designing for humans not robots
tammielis
253
25k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Making the Leap to Tech Lead
cromwellryan
134
9.3k
Building Applications with DynamoDB
mza
95
6.5k
Code Reviewing Like a Champion
maltzj
524
40k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
16
940
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Transcript
[論文紹介] Dynamics of News Events and
Social Media Reac9on Mikalai Tsytsarau*1, Themis Palpanas*2, Malu Castellanos*3 (University of Trento*1, Paris Descartes University*2, HewleJ Pakard*3) KDD 2014 Yoshifumi Seki (Gunosy Inc) 2015.04.07 @Gunosy研究会 #86
概要 • ニュースの波及の様子とその反応についてモ デル化を行う • ニュースの波及について,そのイベントの重 要度とメディアの反応モデルの畳み込みとし て表現することでイベントの重要度を得る
• ニュースの波及と反応にはラグが存在する. 時系列の相関を踏まえることでイベントによっ て反応がどのように変化したのかを捉える.
ニュースの波及について • 青: 検索ボリューム – 常にある程度のボリュームがあり、Eventのインパ クトを見積もるのが難しい • 赤:
提案手法のアウトプット – イベントの影響力を捉えることができている
Modeling News Dynamics • mrf: media response func9on •
e: actual event sequence • n: news volume
media response func9on • h(t): ヘヴィサイドの階段関数
Event importance
News Deconvolu9on • フーリエ逆変換を用いる
Detec9ng Sen9ment Shi\s • Sen9ment Extrac9on – トピックに関連する文書をApache Luceneを用いて 得る
– Sen9Strength Algorithm • hJp://sen9strength.wlv.ac.uk/ • Sen9ment Volume – 文書数(ツイート数)できまる
Detec9ng Sen9ment Shi\s • Contradic9on Level – 意見がわかれている度合い – 平均と分散で測る
– n: number of sen9ments
Correla9ng News and Sen9ments • ピアソンの相関係数 – 線形性を仮定しているので、今回のようなBurstな 変化の相関を捉えるには向いていない
– あるインターバルでバースト(一定以上値が上昇 したかを集合にしてJaccard , Cosine類似度を測る
Experimental Evalua9on • Meme Dataset – top 100 memes 9me
series – approximately 500 peaks – 4 hour aggrega9on • TwiJer – 30 topics(selected) – 7 million tweets, 400 peak during the event – 1 day aggrega9on
Compare Accuracy to Previous Model
Compare Accuracy to Previous Model
Evaluate the Proposed response dynamics
• 映画は事前はPosi9veだが事後にはNega9veなも のが出る • スポーツのような事前に起こることがわかってい るイベントはイベントとの相関が高く出る