Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介][KDD2014]Dynamics of News Events and Soc...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
ysekky
April 08, 2015
Research
0
330
[論文紹介][KDD2014]Dynamics of News Events and Social Media Reaction
ysekky
April 08, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.4k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.8k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.2k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
810
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
3k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.6k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.4k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
230
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
510
【SIGGRAPH Asia 2025】Lo-Fi Photograph with Lo-Fi Communication
toremolo72
0
120
LLMアプリケーションの透明性について
fufufukakaka
0
150
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
900
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
120
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
160
POI: Proof of Identity
katsyoshi
0
140
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
Featured
See All Featured
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
240
A Soul's Torment
seathinner
5
2.3k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.6k
So, you think you're a good person
axbom
PRO
2
1.9k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
Context Engineering - Making Every Token Count
addyosmani
9
670
The agentic SEO stack - context over prompts
schlessera
0
650
Done Done
chrislema
186
16k
Typedesign – Prime Four
hannesfritz
42
3k
It's Worth the Effort
3n
188
29k
Automating Front-end Workflow
addyosmani
1371
200k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Transcript
[論文紹介] Dynamics of News Events and
Social Media Reac9on Mikalai Tsytsarau*1, Themis Palpanas*2, Malu Castellanos*3 (University of Trento*1, Paris Descartes University*2, HewleJ Pakard*3) KDD 2014 Yoshifumi Seki (Gunosy Inc) 2015.04.07 @Gunosy研究会 #86
概要 • ニュースの波及の様子とその反応についてモ デル化を行う • ニュースの波及について,そのイベントの重 要度とメディアの反応モデルの畳み込みとし て表現することでイベントの重要度を得る
• ニュースの波及と反応にはラグが存在する. 時系列の相関を踏まえることでイベントによっ て反応がどのように変化したのかを捉える.
ニュースの波及について • 青: 検索ボリューム – 常にある程度のボリュームがあり、Eventのインパ クトを見積もるのが難しい • 赤:
提案手法のアウトプット – イベントの影響力を捉えることができている
Modeling News Dynamics • mrf: media response func9on •
e: actual event sequence • n: news volume
media response func9on • h(t): ヘヴィサイドの階段関数
Event importance
News Deconvolu9on • フーリエ逆変換を用いる
Detec9ng Sen9ment Shi\s • Sen9ment Extrac9on – トピックに関連する文書をApache Luceneを用いて 得る
– Sen9Strength Algorithm • hJp://sen9strength.wlv.ac.uk/ • Sen9ment Volume – 文書数(ツイート数)できまる
Detec9ng Sen9ment Shi\s • Contradic9on Level – 意見がわかれている度合い – 平均と分散で測る
– n: number of sen9ments
Correla9ng News and Sen9ments • ピアソンの相関係数 – 線形性を仮定しているので、今回のようなBurstな 変化の相関を捉えるには向いていない
– あるインターバルでバースト(一定以上値が上昇 したかを集合にしてJaccard , Cosine類似度を測る
Experimental Evalua9on • Meme Dataset – top 100 memes 9me
series – approximately 500 peaks – 4 hour aggrega9on • TwiJer – 30 topics(selected) – 7 million tweets, 400 peak during the event – 1 day aggrega9on
Compare Accuracy to Previous Model
Compare Accuracy to Previous Model
Evaluate the Proposed response dynamics
• 映画は事前はPosi9veだが事後にはNega9veなも のが出る • スポーツのような事前に起こることがわかってい るイベントはイベントとの相関が高く出る