Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介][KDD2014]Dynamics of News Events and Soc...
Search
ysekky
April 08, 2015
Research
0
320
[論文紹介][KDD2014]Dynamics of News Events and Social Media Reaction
ysekky
April 08, 2015
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.2k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.7k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
760
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.8k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.1k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
3.9k
Other Decks in Research
See All in Research
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
490
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
15k
Principled AI ~深層学習時代における課題解決の方法論~
taniai
3
1.2k
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
240
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
740
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
230
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
2
540
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.2k
Ad-DS Paper Circle #1
ykaneko1992
0
5.6k
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
130
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
1.1k
Looking for Escorts in Sydney?
lunsophia
1
120
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
How to train your dragon (web standard)
notwaldorf
95
6.1k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Faster Mobile Websites
deanohume
307
31k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Why Our Code Smells
bkeepers
PRO
336
57k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Adopting Sorbet at Scale
ufuk
77
9.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
[論文紹介] Dynamics of News Events and
Social Media Reac9on Mikalai Tsytsarau*1, Themis Palpanas*2, Malu Castellanos*3 (University of Trento*1, Paris Descartes University*2, HewleJ Pakard*3) KDD 2014 Yoshifumi Seki (Gunosy Inc) 2015.04.07 @Gunosy研究会 #86
概要 • ニュースの波及の様子とその反応についてモ デル化を行う • ニュースの波及について,そのイベントの重 要度とメディアの反応モデルの畳み込みとし て表現することでイベントの重要度を得る
• ニュースの波及と反応にはラグが存在する. 時系列の相関を踏まえることでイベントによっ て反応がどのように変化したのかを捉える.
ニュースの波及について • 青: 検索ボリューム – 常にある程度のボリュームがあり、Eventのインパ クトを見積もるのが難しい • 赤:
提案手法のアウトプット – イベントの影響力を捉えることができている
Modeling News Dynamics • mrf: media response func9on •
e: actual event sequence • n: news volume
media response func9on • h(t): ヘヴィサイドの階段関数
Event importance
News Deconvolu9on • フーリエ逆変換を用いる
Detec9ng Sen9ment Shi\s • Sen9ment Extrac9on – トピックに関連する文書をApache Luceneを用いて 得る
– Sen9Strength Algorithm • hJp://sen9strength.wlv.ac.uk/ • Sen9ment Volume – 文書数(ツイート数)できまる
Detec9ng Sen9ment Shi\s • Contradic9on Level – 意見がわかれている度合い – 平均と分散で測る
– n: number of sen9ments
Correla9ng News and Sen9ments • ピアソンの相関係数 – 線形性を仮定しているので、今回のようなBurstな 変化の相関を捉えるには向いていない
– あるインターバルでバースト(一定以上値が上昇 したかを集合にしてJaccard , Cosine類似度を測る
Experimental Evalua9on • Meme Dataset – top 100 memes 9me
series – approximately 500 peaks – 4 hour aggrega9on • TwiJer – 30 topics(selected) – 7 million tweets, 400 peak during the event – 1 day aggrega9on
Compare Accuracy to Previous Model
Compare Accuracy to Previous Model
Evaluate the Proposed response dynamics
• 映画は事前はPosi9veだが事後にはNega9veなも のが出る • スポーツのような事前に起こることがわかってい るイベントはイベントとの相関が高く出る