Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Delete, Retrieve, Generate: A Simple Appr...
Search
Yumeto Inaoka
June 20, 2018
Research
0
190
文献紹介: Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer
2018/06/20の文献紹介で発表
Yumeto Inaoka
June 20, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Research
See All in Research
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
2
180
投資戦略202508
pw
0
580
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
110
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
180
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
180
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
300
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
360
説明可能な機械学習と数理最適化
kelicht
2
730
POI: Proof of Identity
katsyoshi
0
120
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
400
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
2
130
Featured
See All Featured
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
280
Testing 201, or: Great Expectations
jmmastey
46
7.8k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
180
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
21
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
0
25
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
It's Worth the Effort
3n
187
29k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Transcript
Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style
Transfer Juncen Li, Robin Jia, He He, Percy Liang. Proceedings of NAACL-HLT 2018, pages 1865–1874, 2018. จݙհ Ԭٕज़Պֶେֶࣗવݴޠॲཧݚڀࣨ ҴԬເਓ
"CTUSBDU wײͳͲͷଐੑΛɺଐੑʹґଘ͠ͳ͍༰Λ อ࣋ͭͭ͠มΛߦ͏λεΫ wֶशʹଐੑͷΈҟͳΔΑ͏ͳจϖΞΛ༻͠ͳ͍ wϑϨʔζΛ%FMFUF 3FUSJFWFͯ͠ɺͦΕΒΛݩʹ ࠷ऴతͳग़ྗΛ(FOFSBUF͢Δ wैདྷख๏ΑΓଟ͘ͷೖྗʹ͓͍ͯจ๏త͔ͭ దͳग़ྗ͕ੜ͞ΕΔ͜ͱΛਓखධՁͰ֬ೝ !2
*OUSPEVDUJPO w ײελΠϧɺ੍࣌ͷΑ͏ͳଐੑΛ੍ޚͰ͖Δ จੜʹؔ৺͕ߴ·͍ͬͯΔ w ௨ৗɺଐੑͷΈҟͳΔύϥϨϧσʔλ༻ Ͱ͖ͣɺଐੑ͕ϥϕϧ͚͞ΕͨจͷΈΛ༻ w ͜Ε·Ͱʹ("/Λ༻͍ͨख๏͕ఏҊ͞Ε͍ͯΔ͕ɺ ग़ྗ͕࣭Ͱ͋Δ͜ͱ͕ਓखධՁͰ໌
!3
*OUSPEVDUJPO w ଐੑʹӨڹΛ༩͑Δ୯ޠ۟ Ҏ֎΄ͱΜͲมߋͤͣ͞ʹ ଐੑมͰ͖Δ߹͕ଟ͍ w ΑΓ୯७Ͱֶश͕؆୯ͳ Ұ࿈ͷγεςϜΛఏҊ !4
"QQSPBDI !5
"QQSPBDI !6
"QQSPBDI !7
"QQSPBDI !8
"QQSPBDI !9
"QQSPBDI !10
"QQSPBDI !11
"QQSPBDI !12
"QQSPBDI !13
"QQSPBDI !14
%FMFUF w ײଐੑͷ߹ɺlQPTJUJWFzͷ࣌ʹݶͬͯΑ͘ग़ݱ ͢ΔOHSBNͱlOFHBUJWFzͷ࣌ʹݶͬͯΑ͘ग़ݱ ͢ΔOHSBNΛଐੑϚʔΧͱͯ͠আ w OHSBN͔ΒଐੑΛྨ͢ΔφΠʔϒϕΠζྨث ʹ͓͚ΔOHSBNͷ͖͕݅֬ࢦఆͷᮢΛ ͑ͨࡍʹଐੑϚʔΧͱ͢Δ !15
3FUSJFWF w ͭͷ୯ޠܥྻͷڑ͕Ұ൪খ͍͞ͷΛऔΓग़͢ w ڑͷܭࢉํ๏ҎԼͷͭΛ࣮ݧ 5'*%'ͰॏΈ͚ͮΒΕͨ୯ޠͷॏͳΓ DPOUFOUFNCFEEJOHTͷϢʔΫϦουڑ ˢEFMFUFޙͷจΛ3//FODPEFSʹೖྗͨ݁͠Ռ
!16
(FOFSBUF %FMFUF0OMZ w %FMFUFޙͷจͱଐੑ͔Β%FMFUFલͷจΛ෮ݩ͢Δ Α͏ʹֶशΛߦ͏ !17
(FOFSBUF %FMFUF"OE3FUSJFWF w ී௨ʹֶशͤ͞ΔͱɺจଐੑϚʔΧΛ݀ຒΊ͢Δ ͚ͩͷֶशʹͳͬͯ͠·͏ ˠεϜʔδϯά͕ߦΘΕͣྲྀெʹͳΒͳ͍ w ଐੑϚʔΧ֬తʹϊΠζΛՃ͑Δ ˡฤूڑ͕ͰಉଐੑͷผϚʔΧஔ͖͑Δ !18
&YQFSJNFOUT w :FMQϨϏϡʔɺ"NB[POϨϏϡʔͷײΛస w ը૾ΩϟϓγϣϯΛΑΓϩϚϯνοΫ͔ϢʔϞϥε ʹͳΔΑ͏มߋ w ैདྷख๏ɺ)VNBO3FGFSFODFɺఏҊ͢Δͭͷ γεςϜΛൺֱ w
)VNBO3FGFSFODF.5VSLͰऩू !19
%BUBTFUT w Ωϟϓγϣϯͷςετηοτࣄ࣮ͷΈͰ͋ΔͨΊ ଐੑϚʔΧͷআͳ͘ɺૠೖͷΈ !20
&YQFSJNFOUBM%FUBJMT w EJNFOTJPOBMXPSEWFDUPST w TJOHMFMBZFS(36XJUIIJEEFOVOJUT w NBYPVUBDUJWBUJPOGVODUJPO w "EBEFMUBXJUIBNJOJCBUDITJ[FPG w
CFBNTFBSDIXJUIBCFBNTJ[FPG !21
)VNBO&WBMVBUJPO w .5VSLͰޏͬͨϫʔΧʔ͕γεςϜͷग़ྗΛධՁ w ஈ֊ͷϦοΧʔτईͰจ๏ੑɺଐੑɺ ҙຯͷอ࣋ΛධՁ w ·ͨͱධՁ͞Εͨ߹ʹग़ྗޭͱݟ၏͢ w ແ࡞ҝʹநग़ͨ͠αϯϓϧΛධՁ
ʢ֤ଐੑ͝ͱʹαϯϓϧʣ !22
)VNBO&WBMVBUJPO !23
$PODMVTJPO w ςΩετଐੑมʹ͓͍ͯैདྷͷ("/ʹΑΔख๏ ΑΓߴੑೳͳख๏ΛఏҊ w จͷଐੑʹӨڹΛ༩͑Δ۟ہॴతͰ͋Δ͜ͱ͕ ޮՌΛେ͖͍ͯ͘͠Δ w কདྷతʹOHSBNΑΓҰൠతͳଐੑͷ֓೦Λ։ൃ ͢Δͱ༗ӹ͕ͩɺΑΓؼೲతόΠΞεΛ͏
!24