Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Delete, Retrieve, Generate: A Simple Appr...
Search
Yumeto Inaoka
June 20, 2018
Research
0
190
文献紹介: Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer
2018/06/20の文献紹介で発表
Yumeto Inaoka
June 20, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
210
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
260
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
180
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
190
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
180
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
300
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
380
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
260
Other Decks in Research
See All in Research
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
580
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
230
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
670
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
3
400
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
240
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
280
2026.01ウェビナー資料
elith
0
220
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
5
1.3k
データサイエンティストの業務変化
datascientistsociety
PRO
0
230
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
140
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
340
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
Featured
See All Featured
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3.1k
How to train your dragon (web standard)
notwaldorf
97
6.5k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
120
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
Building an army of robots
kneath
306
46k
The Limits of Empathy - UXLibs8
cassininazir
1
220
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
The untapped power of vector embeddings
frankvandijk
1
1.6k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
230
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.6k
Transcript
Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style
Transfer Juncen Li, Robin Jia, He He, Percy Liang. Proceedings of NAACL-HLT 2018, pages 1865–1874, 2018. จݙհ Ԭٕज़Պֶେֶࣗવݴޠॲཧݚڀࣨ ҴԬເਓ
"CTUSBDU wײͳͲͷଐੑΛɺଐੑʹґଘ͠ͳ͍༰Λ อ࣋ͭͭ͠มΛߦ͏λεΫ wֶशʹଐੑͷΈҟͳΔΑ͏ͳจϖΞΛ༻͠ͳ͍ wϑϨʔζΛ%FMFUF 3FUSJFWFͯ͠ɺͦΕΒΛݩʹ ࠷ऴతͳग़ྗΛ(FOFSBUF͢Δ wैདྷख๏ΑΓଟ͘ͷೖྗʹ͓͍ͯจ๏త͔ͭ దͳग़ྗ͕ੜ͞ΕΔ͜ͱΛਓखධՁͰ֬ೝ !2
*OUSPEVDUJPO w ײελΠϧɺ੍࣌ͷΑ͏ͳଐੑΛ੍ޚͰ͖Δ จੜʹؔ৺͕ߴ·͍ͬͯΔ w ௨ৗɺଐੑͷΈҟͳΔύϥϨϧσʔλ༻ Ͱ͖ͣɺଐੑ͕ϥϕϧ͚͞ΕͨจͷΈΛ༻ w ͜Ε·Ͱʹ("/Λ༻͍ͨख๏͕ఏҊ͞Ε͍ͯΔ͕ɺ ग़ྗ͕࣭Ͱ͋Δ͜ͱ͕ਓखධՁͰ໌
!3
*OUSPEVDUJPO w ଐੑʹӨڹΛ༩͑Δ୯ޠ۟ Ҏ֎΄ͱΜͲมߋͤͣ͞ʹ ଐੑมͰ͖Δ߹͕ଟ͍ w ΑΓ୯७Ͱֶश͕؆୯ͳ Ұ࿈ͷγεςϜΛఏҊ !4
"QQSPBDI !5
"QQSPBDI !6
"QQSPBDI !7
"QQSPBDI !8
"QQSPBDI !9
"QQSPBDI !10
"QQSPBDI !11
"QQSPBDI !12
"QQSPBDI !13
"QQSPBDI !14
%FMFUF w ײଐੑͷ߹ɺlQPTJUJWFzͷ࣌ʹݶͬͯΑ͘ग़ݱ ͢ΔOHSBNͱlOFHBUJWFzͷ࣌ʹݶͬͯΑ͘ग़ݱ ͢ΔOHSBNΛଐੑϚʔΧͱͯ͠আ w OHSBN͔ΒଐੑΛྨ͢ΔφΠʔϒϕΠζྨث ʹ͓͚ΔOHSBNͷ͖͕݅֬ࢦఆͷᮢΛ ͑ͨࡍʹଐੑϚʔΧͱ͢Δ !15
3FUSJFWF w ͭͷ୯ޠܥྻͷڑ͕Ұ൪খ͍͞ͷΛऔΓग़͢ w ڑͷܭࢉํ๏ҎԼͷͭΛ࣮ݧ 5'*%'ͰॏΈ͚ͮΒΕͨ୯ޠͷॏͳΓ DPOUFOUFNCFEEJOHTͷϢʔΫϦουڑ ˢEFMFUFޙͷจΛ3//FODPEFSʹೖྗͨ݁͠Ռ
!16
(FOFSBUF %FMFUF0OMZ w %FMFUFޙͷจͱଐੑ͔Β%FMFUFલͷจΛ෮ݩ͢Δ Α͏ʹֶशΛߦ͏ !17
(FOFSBUF %FMFUF"OE3FUSJFWF w ී௨ʹֶशͤ͞ΔͱɺจଐੑϚʔΧΛ݀ຒΊ͢Δ ͚ͩͷֶशʹͳͬͯ͠·͏ ˠεϜʔδϯά͕ߦΘΕͣྲྀெʹͳΒͳ͍ w ଐੑϚʔΧ֬తʹϊΠζΛՃ͑Δ ˡฤूڑ͕ͰಉଐੑͷผϚʔΧஔ͖͑Δ !18
&YQFSJNFOUT w :FMQϨϏϡʔɺ"NB[POϨϏϡʔͷײΛస w ը૾ΩϟϓγϣϯΛΑΓϩϚϯνοΫ͔ϢʔϞϥε ʹͳΔΑ͏มߋ w ैདྷख๏ɺ)VNBO3FGFSFODFɺఏҊ͢Δͭͷ γεςϜΛൺֱ w
)VNBO3FGFSFODF.5VSLͰऩू !19
%BUBTFUT w Ωϟϓγϣϯͷςετηοτࣄ࣮ͷΈͰ͋ΔͨΊ ଐੑϚʔΧͷআͳ͘ɺૠೖͷΈ !20
&YQFSJNFOUBM%FUBJMT w EJNFOTJPOBMXPSEWFDUPST w TJOHMFMBZFS(36XJUIIJEEFOVOJUT w NBYPVUBDUJWBUJPOGVODUJPO w "EBEFMUBXJUIBNJOJCBUDITJ[FPG w
CFBNTFBSDIXJUIBCFBNTJ[FPG !21
)VNBO&WBMVBUJPO w .5VSLͰޏͬͨϫʔΧʔ͕γεςϜͷग़ྗΛධՁ w ஈ֊ͷϦοΧʔτईͰจ๏ੑɺଐੑɺ ҙຯͷอ࣋ΛධՁ w ·ͨͱධՁ͞Εͨ߹ʹग़ྗޭͱݟ၏͢ w ແ࡞ҝʹநग़ͨ͠αϯϓϧΛධՁ
ʢ֤ଐੑ͝ͱʹαϯϓϧʣ !22
)VNBO&WBMVBUJPO !23
$PODMVTJPO w ςΩετଐੑมʹ͓͍ͯैདྷͷ("/ʹΑΔख๏ ΑΓߴੑೳͳख๏ΛఏҊ w จͷଐੑʹӨڹΛ༩͑Δ۟ہॴతͰ͋Δ͜ͱ͕ ޮՌΛେ͖͍ͯ͘͠Δ w কདྷతʹOHSBNΑΓҰൠతͳଐੑͷ֓೦Λ։ൃ ͢Δͱ༗ӹ͕ͩɺΑΓؼೲతόΠΞεΛ͏
!24