$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Delete, Retrieve, Generate: A Simple Appr...
Search
Yumeto Inaoka
June 20, 2018
Research
0
190
文献紹介: Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer
2018/06/20の文献紹介で発表
Yumeto Inaoka
June 20, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Research
See All in Research
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
700
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
120
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
150
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
6.3k
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
330
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
170
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
320
Language Models Are Implicitly Continuous
eumesy
PRO
0
350
説明可能な機械学習と数理最適化
kelicht
2
700
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
350
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
490
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
We Have a Design System, Now What?
morganepeng
54
7.9k
Site-Speed That Sticks
csswizardry
13
1k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Become a Pro
speakerdeck
PRO
31
5.7k
The Language of Interfaces
destraynor
162
25k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Transcript
Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style
Transfer Juncen Li, Robin Jia, He He, Percy Liang. Proceedings of NAACL-HLT 2018, pages 1865–1874, 2018. จݙհ Ԭٕज़Պֶେֶࣗવݴޠॲཧݚڀࣨ ҴԬເਓ
"CTUSBDU wײͳͲͷଐੑΛɺଐੑʹґଘ͠ͳ͍༰Λ อ࣋ͭͭ͠มΛߦ͏λεΫ wֶशʹଐੑͷΈҟͳΔΑ͏ͳจϖΞΛ༻͠ͳ͍ wϑϨʔζΛ%FMFUF 3FUSJFWFͯ͠ɺͦΕΒΛݩʹ ࠷ऴతͳग़ྗΛ(FOFSBUF͢Δ wैདྷख๏ΑΓଟ͘ͷೖྗʹ͓͍ͯจ๏త͔ͭ దͳग़ྗ͕ੜ͞ΕΔ͜ͱΛਓखධՁͰ֬ೝ !2
*OUSPEVDUJPO w ײελΠϧɺ੍࣌ͷΑ͏ͳଐੑΛ੍ޚͰ͖Δ จੜʹؔ৺͕ߴ·͍ͬͯΔ w ௨ৗɺଐੑͷΈҟͳΔύϥϨϧσʔλ༻ Ͱ͖ͣɺଐੑ͕ϥϕϧ͚͞ΕͨจͷΈΛ༻ w ͜Ε·Ͱʹ("/Λ༻͍ͨख๏͕ఏҊ͞Ε͍ͯΔ͕ɺ ग़ྗ͕࣭Ͱ͋Δ͜ͱ͕ਓखධՁͰ໌
!3
*OUSPEVDUJPO w ଐੑʹӨڹΛ༩͑Δ୯ޠ۟ Ҏ֎΄ͱΜͲมߋͤͣ͞ʹ ଐੑมͰ͖Δ߹͕ଟ͍ w ΑΓ୯७Ͱֶश͕؆୯ͳ Ұ࿈ͷγεςϜΛఏҊ !4
"QQSPBDI !5
"QQSPBDI !6
"QQSPBDI !7
"QQSPBDI !8
"QQSPBDI !9
"QQSPBDI !10
"QQSPBDI !11
"QQSPBDI !12
"QQSPBDI !13
"QQSPBDI !14
%FMFUF w ײଐੑͷ߹ɺlQPTJUJWFzͷ࣌ʹݶͬͯΑ͘ग़ݱ ͢ΔOHSBNͱlOFHBUJWFzͷ࣌ʹݶͬͯΑ͘ग़ݱ ͢ΔOHSBNΛଐੑϚʔΧͱͯ͠আ w OHSBN͔ΒଐੑΛྨ͢ΔφΠʔϒϕΠζྨث ʹ͓͚ΔOHSBNͷ͖͕݅֬ࢦఆͷᮢΛ ͑ͨࡍʹଐੑϚʔΧͱ͢Δ !15
3FUSJFWF w ͭͷ୯ޠܥྻͷڑ͕Ұ൪খ͍͞ͷΛऔΓग़͢ w ڑͷܭࢉํ๏ҎԼͷͭΛ࣮ݧ 5'*%'ͰॏΈ͚ͮΒΕͨ୯ޠͷॏͳΓ DPOUFOUFNCFEEJOHTͷϢʔΫϦουڑ ˢEFMFUFޙͷจΛ3//FODPEFSʹೖྗͨ݁͠Ռ
!16
(FOFSBUF %FMFUF0OMZ w %FMFUFޙͷจͱଐੑ͔Β%FMFUFલͷจΛ෮ݩ͢Δ Α͏ʹֶशΛߦ͏ !17
(FOFSBUF %FMFUF"OE3FUSJFWF w ී௨ʹֶशͤ͞ΔͱɺจଐੑϚʔΧΛ݀ຒΊ͢Δ ͚ͩͷֶशʹͳͬͯ͠·͏ ˠεϜʔδϯά͕ߦΘΕͣྲྀெʹͳΒͳ͍ w ଐੑϚʔΧ֬తʹϊΠζΛՃ͑Δ ˡฤूڑ͕ͰಉଐੑͷผϚʔΧஔ͖͑Δ !18
&YQFSJNFOUT w :FMQϨϏϡʔɺ"NB[POϨϏϡʔͷײΛస w ը૾ΩϟϓγϣϯΛΑΓϩϚϯνοΫ͔ϢʔϞϥε ʹͳΔΑ͏มߋ w ैདྷख๏ɺ)VNBO3FGFSFODFɺఏҊ͢Δͭͷ γεςϜΛൺֱ w
)VNBO3FGFSFODF.5VSLͰऩू !19
%BUBTFUT w Ωϟϓγϣϯͷςετηοτࣄ࣮ͷΈͰ͋ΔͨΊ ଐੑϚʔΧͷআͳ͘ɺૠೖͷΈ !20
&YQFSJNFOUBM%FUBJMT w EJNFOTJPOBMXPSEWFDUPST w TJOHMFMBZFS(36XJUIIJEEFOVOJUT w NBYPVUBDUJWBUJPOGVODUJPO w "EBEFMUBXJUIBNJOJCBUDITJ[FPG w
CFBNTFBSDIXJUIBCFBNTJ[FPG !21
)VNBO&WBMVBUJPO w .5VSLͰޏͬͨϫʔΧʔ͕γεςϜͷग़ྗΛධՁ w ஈ֊ͷϦοΧʔτईͰจ๏ੑɺଐੑɺ ҙຯͷอ࣋ΛධՁ w ·ͨͱධՁ͞Εͨ߹ʹग़ྗޭͱݟ၏͢ w ແ࡞ҝʹநग़ͨ͠αϯϓϧΛධՁ
ʢ֤ଐੑ͝ͱʹαϯϓϧʣ !22
)VNBO&WBMVBUJPO !23
$PODMVTJPO w ςΩετଐੑมʹ͓͍ͯैདྷͷ("/ʹΑΔख๏ ΑΓߴੑೳͳख๏ΛఏҊ w จͷଐੑʹӨڹΛ༩͑Δ۟ہॴతͰ͋Δ͜ͱ͕ ޮՌΛେ͖͍ͯ͘͠Δ w কདྷతʹOHSBNΑΓҰൠతͳଐੑͷ֓೦Λ։ൃ ͢Δͱ༗ӹ͕ͩɺΑΓؼೲతόΠΞεΛ͏
!24