Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Natural Language Generation enhances huma...
Search
Yumeto Inaoka
September 21, 2017
Research
0
240
文献紹介: Natural Language Generation enhances human decision-making with uncertain information
2017/09/21の文献紹介で発表
Yumeto Inaoka
September 21, 2017
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
260
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
180
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
190
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
180
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
300
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
370
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
250
Other Decks in Research
See All in Research
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
200
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
110
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
960
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
670
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
480
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
550
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
850
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
180
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
140
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
520
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
527
40k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
A better future with KSS
kneath
240
18k
WENDY [Excerpt]
tessaabrams
9
36k
BBQ
matthewcrist
89
10k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Prompt Engineering for Job Search
mfonobong
0
150
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
84
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
Paper Plane
katiecoart
PRO
0
46k
Transcript
Natural Language Generation enhances human decision-making with uncertain information Dimitra
Gkatzia, Oliver Lemon, Verena Rieser. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 264–268, 2016. 1 文献紹介(2017/09/21) 自然言語処理研究室 稲岡 夢人
概要 • 人間の意思決定は不確実なデータに依存 することが多い • 不確実なデータの提示方法の違いによる 意思決定への影響を測定 • 不確実なデータにおいて自然言語生成(NLG) はグラフによる提示を改善
2
導入 • NLGはグラフィカルなデータ可視化技術と同等 の結果を達成できるとされている • 現在のdata-to-textシステムは元データが正 確な事実であることが前提 →医学や天気予報において適用できない • 実際にはリスクや不確実性を単に数値で
提示するのは不十分とされている 3
天気予報の生成 • 本論文では天気予報の生成が対象 • 不確実な情報の提示手段、気象現象の 発生確率への言及に焦点を当てる • 従来のNLGシステムの評価に用いられる 文法, 正確性,
流暢性, 一貫性, 後編集評価 ではなく、不確実性の理解や意思決定に 及ぼす影響を測定する 4
データ収集環境 • Met OfficeのWeather Gameを拡張した ゲームベースによるデータ収集 • プレーヤーは天気予報に基づいて 売上を最大化するアイスクリーム売りの 送り先を決定
5
天気予報の提示 • 天気予報はグラフィカルな提示とテキストの提 示、マルチモーダルな提示を使用 6
天気予報文の生成 • SimpleNLGを使用 • WMO-based, NATURALのシステムを開発 • WMO-based : 世界気象機関(WMO)のガイドラインに従う
• NATURAL : 気象予報士が天気を報告する自然な方法を 模倣するシステム 7
実験設定 • 女性197人, 男性241人, その他4人の 合計442人をプレーヤーとして募集 • 450のそれぞれ異なるゲーム事例を使用 • ゲームのスコアはプレーヤーの決定と
自信の度合いで計算 • 自信の度合いは10点満点でプレーヤーによっ て宣言される 8
実験結果(スコア) • マルチモーダルな提示はグラフのみに 比べて有意に高いスコア • マルチモーダルな提示とNLGに大差はない • グラフのみよりNLGの方が高い • WMO-basedとNATURALに大差はない
9
実験結果(自信の度合い) • 自信の度合いはグラフの方が有意に効果的 • NLGとグラフの提示を比較すると、 スコアと自信の度合いの大小関係が逆転 10
実験結果(性差) • 女性のみの結果ではNLGの出力がスコアをよ り高くしている • 男性はあらゆる提示方法で似たような スコアとなっている →NLGの効果は主に女性によって現れて いることを示唆 11
結論 • 不確実なデータのテキストの提示に関して ゲームベースの調査結果を示した • NLG, グラフ, マルチモーダルなタスクの間には かなりの性差がある →これまでの研究は性別間で区別されて
いなかったため重要な知見 12