$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Natural Language Generation enhances huma...
Search
Yumeto Inaoka
September 21, 2017
Research
0
240
文献紹介: Natural Language Generation enhances human decision-making with uncertain information
2017/09/21の文献紹介で発表
Yumeto Inaoka
September 21, 2017
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Research
See All in Research
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
940
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
2
250
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
0
110
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
17k
財務諸表監査のための逐次検定
masakat0
0
210
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
360
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
180
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
210
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
460
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
POI: Proof of Identity
katsyoshi
0
120
Featured
See All Featured
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
89
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
0
99
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
0
42
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
35
KATA
mclloyd
PRO
33
15k
Writing Fast Ruby
sferik
630
62k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Design in an AI World
tapps
0
97
Six Lessons from altMBA
skipperchong
29
4.1k
Transcript
Natural Language Generation enhances human decision-making with uncertain information Dimitra
Gkatzia, Oliver Lemon, Verena Rieser. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 264–268, 2016. 1 文献紹介(2017/09/21) 自然言語処理研究室 稲岡 夢人
概要 • 人間の意思決定は不確実なデータに依存 することが多い • 不確実なデータの提示方法の違いによる 意思決定への影響を測定 • 不確実なデータにおいて自然言語生成(NLG) はグラフによる提示を改善
2
導入 • NLGはグラフィカルなデータ可視化技術と同等 の結果を達成できるとされている • 現在のdata-to-textシステムは元データが正 確な事実であることが前提 →医学や天気予報において適用できない • 実際にはリスクや不確実性を単に数値で
提示するのは不十分とされている 3
天気予報の生成 • 本論文では天気予報の生成が対象 • 不確実な情報の提示手段、気象現象の 発生確率への言及に焦点を当てる • 従来のNLGシステムの評価に用いられる 文法, 正確性,
流暢性, 一貫性, 後編集評価 ではなく、不確実性の理解や意思決定に 及ぼす影響を測定する 4
データ収集環境 • Met OfficeのWeather Gameを拡張した ゲームベースによるデータ収集 • プレーヤーは天気予報に基づいて 売上を最大化するアイスクリーム売りの 送り先を決定
5
天気予報の提示 • 天気予報はグラフィカルな提示とテキストの提 示、マルチモーダルな提示を使用 6
天気予報文の生成 • SimpleNLGを使用 • WMO-based, NATURALのシステムを開発 • WMO-based : 世界気象機関(WMO)のガイドラインに従う
• NATURAL : 気象予報士が天気を報告する自然な方法を 模倣するシステム 7
実験設定 • 女性197人, 男性241人, その他4人の 合計442人をプレーヤーとして募集 • 450のそれぞれ異なるゲーム事例を使用 • ゲームのスコアはプレーヤーの決定と
自信の度合いで計算 • 自信の度合いは10点満点でプレーヤーによっ て宣言される 8
実験結果(スコア) • マルチモーダルな提示はグラフのみに 比べて有意に高いスコア • マルチモーダルな提示とNLGに大差はない • グラフのみよりNLGの方が高い • WMO-basedとNATURALに大差はない
9
実験結果(自信の度合い) • 自信の度合いはグラフの方が有意に効果的 • NLGとグラフの提示を比較すると、 スコアと自信の度合いの大小関係が逆転 10
実験結果(性差) • 女性のみの結果ではNLGの出力がスコアをよ り高くしている • 男性はあらゆる提示方法で似たような スコアとなっている →NLGの効果は主に女性によって現れて いることを示唆 11
結論 • 不確実なデータのテキストの提示に関して ゲームベースの調査結果を示した • NLG, グラフ, マルチモーダルなタスクの間には かなりの性差がある →これまでの研究は性別間で区別されて
いなかったため重要な知見 12