Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
複数のX-lineを形成する磁気リコネクションでの電子加速 / Elecron Acceler...
Search
Tsubasa Yumura
February 05, 2008
Science
1
340
複数のX-lineを形成する磁気リコネクションでの電子加速 / Elecron Acceleration during Magnetic Reconnection with multiple X-lines
2008年度 修士論文発表会の発表資料
修士論文→
https://drive.google.com/open?id=0Bzb0bpXeRHYRWUptUEt3Ni11blk
Tsubasa Yumura
February 05, 2008
Tweet
Share
More Decks by Tsubasa Yumura
See All by Tsubasa Yumura
Human-Computer Interaction (HCI) 入門 #北海道LT大会 / HCI2023
yumu19
0
190
Tinkercadの電子回路シミュレータはいいぞ #北海道まったりLT大会 / Tinkercad
yumu19
1
3.3k
メイカーズ文化とシチズンサイエンス #JOSS2021 / Makers Culture and Citizen Science
yumu19
0
660
バーチャルSNS clusterを用いたイベント開催 / Event Organization with Virtual SNS “cluster”
yumu19
0
160
石川での6年間 / 6 years in Ishikawa
yumu19
0
310
NT札幌2020 in cluster 開催報告 #XRMTG / NT Sapporo 2020 in cluster
yumu19
0
110
Space Apps Challenge Tokyo 2020 開会式
yumu19
0
110
社会人博士のススメ
yumu19
2
7.7k
SpaceApps COVID-19 Challenge開会式
yumu19
0
150
Other Decks in Science
See All in Science
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
980
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
160
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.2k
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
380
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
4
1.9k
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
150
IWASAKI Hideo
genomethica
0
130
2025-06-11-ai_belgium
sofievl
1
140
オンプレミス環境にKubernetesを構築する
koukimiura
0
320
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.4k
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
0
290
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
9
560
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
470
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
Thoughts on Productivity
jonyablonski
69
4.8k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Rails Girls Zürich Keynote
gr2m
95
14k
Six Lessons from altMBA
skipperchong
28
4k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Become a Pro
speakerdeck
PRO
29
5.5k
Transcript
ෳͷ X-line Λܗ͢Δ ࣓ؾϦίωΫγϣϯͰͷిࢠՃ ౦ژେֶେֶӃɹཧֶܥݚڀՊ ٿՊֶઐ߈ɹӉՊֶେߨ࠲ ౻ຊݚڀࣨɹ౬ଜɹཌྷ
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 2
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 3
࣓ؾϦίωΫγϣϯ 4 ࣓ؾϦίωΫγϣϯɿ࣓ྗઢ͕ܨ͗ΘΔʢre- connectionʣ ESA ϛΫϩεέʔϧͰൃੜ 㱺 େنߏʹൃల ฏߦͳ࣓ͱڥքిྲྀ B
࣓ B ࣓ J ిྲྀ
ӉϓϥζϚதͷ࣓ؾϦίωΫγϣϯ 5 ଠཅίϩφϧʔϓ (NASA TRACE) ͔ʹӢ (NASA Chandra, Hubble) ٿ࣓ؾݍͱ
GEOTAIL Ӵ (JAXA) • ଠཅ • ࣓ؾݍڥքɾ࣓ؾݍඌ෦ • ߴΤωϧΪʔఱମ • ӉϓϥζϚͷΤωϧΪʔ ։์ݱͱͯ͠ॏཁ
࣓ؾϦίωΫγϣϯిࢠՃ 6 • ਓӴ(GEOTAIL, Cluster )ʹΑΔٿ࣓ؾݍͷͦͷ؍ ଌ • γϛϡϨʔγϣϯʹΑΔՃϝΧχζϜղ໌ –
X-line ۙͷ meandering/Speiser ӡಈ [Speiser, 1965] – pileup ྖҬͰͷ ∇BυϦϑτ/ۂυϦϑτ [Hoshino et al., 2001 JGR] • ୯Ұͳ X-line Λ༩͑ΔγϛϡϨʔγϣϯϞσϧ͕ओྲྀ X-line pileup ྖҬ
ෳͷ X-line Λܗ͢ΔϦίωΫγϣϯ 7 Chen et al. (2007) ຊݚڀͷత ෳͷ
X-line Λܗ͢Δ࣓ؾϦίωΫ γϣϯͰͷిࢠՃϝΧχζϜΛղ໌͢Δ • ٿ࣓ؾݍඌ෦ଠཅ෩தͰ؍ଌ͞ΕΔ • X-line ؒͷด࣓ͨ͡ྗઢɿ࣓ؾౡ – ؍ଌɿ࣓ؾౡͱߴΤωϧΪʔిࢠ [Chen et al., 2007] – ࣓ؾౡ߹ମ͢Δ [Finn and Kaw, 1977] – γϛϡϨʔγϣϯɿ࣓ؾౡ߹ମͱిࢠՃ [Saito and Sakai, 2006] ࣓ؾౡ X-line
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 8
εʔύʔίϯϐϡʔλ 9 ӉՊֶݚڀຊ෦ Space Science Simulator (SSS) JAXA
ཻࢠγϛϡϨʔγϣϯ • Maxwell ํఔࣜ • ཻࢠͷӡಈํఔࣜ 10 ∇×B = cµ0
J+ E /c ∇×E = ʵ B /c m v = q(E + v×B/cγ) m = γm0 γ = (1-v2/c2)-1/2 ཻࢠҠಈ F → v → x ిՙɾిྲྀີ x → ρ, v → J Maxwell ํఔࣜ ρ, J → E , B ӡಈํఔࣜ E , B → F ɾ ɾ ɾ PIC (particle in-cell) ๏
γϛϡϨʔγϣϯઃఆ 11 ॳظ݅ɿHarris ܕిྲྀ n(z) = n0 /cosh2(z/d) + n1
Bx (z) = B0 tanh(z/d) Bx n z z 2 ࣍ݩγϛϡϨʔγϣϯ x z y Lx Lz Bx
1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4. ύϥϝʔλઃఆґଘੑ
5. ݁ ࣍ 12
݁Ռɿ୯Ұͳ X-line Λ༩͑Δ߹ 13 ne /n0 0 1 48 24
0 0 12 -12 x /λi z /λi ిࢠີ
݁Ռɿෳͷ X-line Λ༩͑Δ߹ 14 ne /n0 0 1 48 24
0 0 12 -12 x /λi z /λi ిࢠີ
࣓ؾౡ߹ମͷൃల 15 • Lx=48 nm=8 Ͱ࣓ؾౡ 8→2 , 2→1 ͷ̎ஈ֊߹ମ
࣓ؾதੑ໘ (z=0) Ͱͷిࢠີ
࣓ؾౡ߹ମͱిࢠՃ 16 ࣓ؾதੑ໘ (z=0) Ͱͷిࢠີ ΤωϧΪʔεϖΫτϧ ΤωϧΪʔɿε=γ-1 • 1ஈ֊߹ମ (8→2)
ʹେ෯ʹΤωϧΪʔ૿Ճ • ߹ମͷ߹͍ؒ(t=30ʙ34) ΄ͱΜͲΤωϧΪʔ૿Ճͳ͠ • ిࢠՃ࣓ؾౡ߹ମʹରԠ͢Δ
ߴΤωϧΪʔిࢠͷۭؒ <#> 17 0ɹɹ ɹɹ ɹ80 counts / cell Ωi
T = 40 Ωi T = 20 Ωi T = 30 Ωi T = 10 ߴΤωϧΪʔ (ε > 1) ిࢠ • ୯Ұͳ X-line ͷ߹ɺ࣓ؾౡΛ ғΉϦϯάঢ়Λܗ • ઌߦݚڀͰಉ༷ͷߏ
ߴΤωϧΪʔిࢠͷۭؒ 18 Ωi T = 20 Ωi T =30 Ωi
T = 34 Ωi T = 38 0ɹ ɹ80 Counts / cell Ωi T = 40 Ωi T = 50 • 2 ஈ֊߹ମʹΑΓ̎ॏϦϯάঢ়Λܗ ߴΤωϧΪʔ (ε > 1) ిࢠ
ిࢠՃྖҬͷಛఆ 19 • ి͕ిࢠʹ୯Ґ࣌ؒ͋ͨΓʹ༩͑ΔΤωϧΪʔɹJeɾE • JeɾE ͕େ͖͍ྖҬʢԼਤͷ͍ྖҬʣిࢠՃྖҬ • X-line, pileup
ྖҬʹՃ࣓͑ؾౡ߹ମྖҬՃྖҬ
࣓ؾౡ߹ମྖҬͰͷՃ 20 Ωi T = 30 Ωi T = 34
Ωi T = 38 • ࣓ؾౡ߹ମྖҬͰΤωϧΪʔεϖΫτϧΛऔಘ • ࣓ؾౡ߹ମ࣌ʹΤωϧΪʔ૿Ճ
࣓ؾౡ߹ମྖҬͰͷՃ 21 Ey Vey 0.0 2 -0.09 0 5 0
-3 • X-line ͱಉ༷ͷߏ • Ey ͰՃ • ࣓ؾౡ߹ମ࣌ʹܗ͢Δ X-line ͰՃ -12 12 0 z x z y Vex Vey
Ճཻࢠ(ε>25)ͷيಓ 22 X-line ࣓ؾౡ߹ମ pileup energy - time energy -
x z- x • 30ݸͷߴΤωϧΪʔ(ε>25)ిࢠͷཻࢠيಓΛௐͨ • શͯͷిࢠ X-line ͰՃΛड͚ͨ • ଟ͘ͷిࢠ X-line ͷޙʹpileup ྖҬ and/or ࣓ؾౡ߹ ମྖҬͰՃΛड͚͍ͯͨ ΤωϧΪʔɿε=γ-1
࣍ 23 1. ং 2. γϛϡϨʔγϣϯ 3. Multiple X-line ͷޮՌ
4. ύϥϝʔλઃఆґଘੑ – ܭࢉྖҬͷେ͖͞ґଘੑ 5. ݁
ܭࢉྖҬͷେ͖͞ґଘੑ 24 ܭࢉ ܭࢉྖҬͷେ͖͞ Lx × Lz (λi) ॳظͷ࣓ؾౡα Πζ(λi)
ॳظͷ࣓ؾౡ ̍ 48 × 32 6 8 ̎ 24 × 32 6 4 ̏ 96 × 64 6 16 • n ∝ ε-α ͰϑΟοςΟϯά
ܭࢉྖҬͷେ͖͞ґଘੑ • ϦίωΫγϣϯεέʔϧͱΤωϧΪʔ૿Ճ – શମɿ͓͓Αͦઢܗ – ࣓ؾౡ߹ମྖҬɿඇઢܗ • εέʔϧ֦େ → ߹ମྖҬͷՃେɹɹɹɹ →
ඇతిࢠͷੜ૿Ճ 25 શମ ࣓ؾౡ߹ମྖҬ ̑ഒ 2ഒ 2ഒ
1. ং 2. γϛϡϨʔγϣϯ 3. Multiple X-line ͷޮՌ 4. ύϥϝʔλઃఆґଘੑ
5. ݁ ࣍ 26
݁ • ࣓ؾౡͷଟஈ֊߹ମʹΑΓߴΤωϧΪʔి ࢠଟॏϦϯάΛܗ͢Δɿ؍ଌͷد ༩ • X-line ͱ pileup ྖҬʹՃ࣓͑ؾౡ߹ମྖҬ
ిࢠΛՃ͢Δɿ৽ͨͳཻࢠՃϝΧχζ Ϝ • ߴΤωϧΪʔిࢠͷੜෳͷՃྖ ҬʹΑΔଟஈ֊Ճ͕ॏཁ • ϦίωΫγϣϯͷεέʔϧ֦େͱͱʹ࣓ 27
݁ • X-line ͰՃͰ͖ ΔΤωϧΪʔʹ ݶք͕͋Δ • ͞ΒͳΔՃ pile ྖҬ
and/or ࣓ؾ ౡ߹ମྖҬͰಘΒ ΕΔ 28
֤ిࢠՃྖҬͰͷΤωϧΪʔ૿Ճ 29 ୯Ґ࣌ؒͨΓͷΤωϧΪʔ૿Ճ ΤωϧΪʔ૿Ճͷ૯ྔ • ՃྖҬຖʹΤωϧΪʔ૿ՃΛൺֱ • pileup ྖҬ͕શମͷΤωϧΪʔ૿Ճʹ࠷د༩͢Δ •
࣓ؾౡ߹ମՃଞͷྖҬͱൺͯখ͍͞ ∫JeɾE dSɹSɿ֤ՃྖҬͷ໘ੵ ∬JeɾE dSdtɹ
ܭࢉྖҬͷେ͖͞ґଘੑ • ిྲྀ໘ੵͰن֨Խ • ϦίωΫγϣϯͷεέʔϧ͕େ͖͘ͳ ΔʹͭΕΤωϧΪʔ͕૿Ճ͢Δ 30
ܭࢉྖҬͷେ͖͞ґଘੑ • X-line , pileup ྖҬɿ̎ഒ • ࣓ؾౡ߹ମྖҬɿ̐ഒ • ࣓ؾϦίωΫγϣϯͷεέʔϧ͕֦େ
͢Δͱ࣓ؾౡ߹ମྖҬͷد༩͕૿Ճ͢ Δɹ→ɹඇతిࢠͷੜͷ૿Ճ 31 ܭࢉ̏ɹ96 × 64 ܭࢉ̍ɹ48 × 32
pileup ྖҬͰͷՃ 32 • pileup ྖҬ (|Bz| େ) Ͱڧ͍ Ey
• ∇B υϦϑτ • ۂυϦϑτ ∇B v ∝ ʵB×∇B // ʵ y v ∝ ʵR×B // ʵ y x z y B R
࣓ؾౡ߹ମ vs. SXL 33 run Mass Ratio Space(λi ) nm
GF D(λi ) perturbation 1 100 48 × 32 8 0 0.5 GEM 2 100 48 × 32 8 0 0.5 GEM 3 100 48 × 32 SXL 0 0.5 Gaussian
ΨΠυ࣓ґଘੑ 34 run Mass Ratio Space(λi ) nm GF D(λi
) perturbation 1 100 48 × 32 8 0 0.5 GEM 5 100 48 × 32 8 0.5 0.5 GEM
݁ (2/2) • ߴΤωϧΪʔిࢠ X-line ͰͷՃޙʹ pileup ྖҬ and/or ࣓ؾౡ߹ମྖҬͰ͞Β
ʹՃΛड͚ͯੜ͞ΕΔ • ϦίωΫγϣϯͷεέʔϧͱͱʹ࣓ؾౡ ߹ମྖҬͰͷՃݦஶʹͳΓଟͷඇ తిࢠΛੜ͢Δ 35