Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
複数のX-lineを形成する磁気リコネクションでの電子加速 / Elecron Acceler...
Search
Tsubasa Yumura
February 05, 2008
Science
1
280
複数のX-lineを形成する磁気リコネクションでの電子加速 / Elecron Acceleration during Magnetic Reconnection with multiple X-lines
2008年度 修士論文発表会の発表資料
修士論文→
https://drive.google.com/open?id=0Bzb0bpXeRHYRWUptUEt3Ni11blk
Tsubasa Yumura
February 05, 2008
Tweet
Share
More Decks by Tsubasa Yumura
See All by Tsubasa Yumura
Human-Computer Interaction (HCI) 入門 #北海道LT大会 / HCI2023
yumu19
0
170
Tinkercadの電子回路シミュレータはいいぞ #北海道まったりLT大会 / Tinkercad
yumu19
1
3.1k
メイカーズ文化とシチズンサイエンス #JOSS2021 / Makers Culture and Citizen Science
yumu19
0
610
バーチャルSNS clusterを用いたイベント開催 / Event Organization with Virtual SNS “cluster”
yumu19
0
120
石川での6年間 / 6 years in Ishikawa
yumu19
0
290
NT札幌2020 in cluster 開催報告 #XRMTG / NT Sapporo 2020 in cluster
yumu19
0
88
Space Apps Challenge Tokyo 2020 開会式
yumu19
0
94
社会人博士のススメ
yumu19
2
7.4k
SpaceApps COVID-19 Challenge開会式
yumu19
0
140
Other Decks in Science
See All in Science
LIMEを用いた判断根拠の可視化
kentaitakura
0
420
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
130
Online Feedback Optimization
floriandoerfler
0
790
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
220
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
790
240510 COGNAC LabChat
kazh
0
170
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
670
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
130
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
270
ベイズのはなし
techmathproject
0
380
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
800
私たちのプロダクトにとってのよいテスト/good test for our products
camel_404
0
240
Featured
See All Featured
Become a Pro
speakerdeck
PRO
26
5.1k
A Tale of Four Properties
chriscoyier
157
23k
Documentation Writing (for coders)
carmenintech
67
4.6k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
11
900
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
990
Designing for Performance
lara
604
68k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
BBQ
matthewcrist
85
9.4k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Side Projects
sachag
452
42k
Transcript
ෳͷ X-line Λܗ͢Δ ࣓ؾϦίωΫγϣϯͰͷిࢠՃ ౦ژେֶେֶӃɹཧֶܥݚڀՊ ٿՊֶઐ߈ɹӉՊֶେߨ࠲ ౻ຊݚڀࣨɹ౬ଜɹཌྷ
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 2
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 3
࣓ؾϦίωΫγϣϯ 4 ࣓ؾϦίωΫγϣϯɿ࣓ྗઢ͕ܨ͗ΘΔʢre- connectionʣ ESA ϛΫϩεέʔϧͰൃੜ 㱺 େنߏʹൃల ฏߦͳ࣓ͱڥքిྲྀ B
࣓ B ࣓ J ిྲྀ
ӉϓϥζϚதͷ࣓ؾϦίωΫγϣϯ 5 ଠཅίϩφϧʔϓ (NASA TRACE) ͔ʹӢ (NASA Chandra, Hubble) ٿ࣓ؾݍͱ
GEOTAIL Ӵ (JAXA) • ଠཅ • ࣓ؾݍڥքɾ࣓ؾݍඌ෦ • ߴΤωϧΪʔఱମ • ӉϓϥζϚͷΤωϧΪʔ ։์ݱͱͯ͠ॏཁ
࣓ؾϦίωΫγϣϯిࢠՃ 6 • ਓӴ(GEOTAIL, Cluster )ʹΑΔٿ࣓ؾݍͷͦͷ؍ ଌ • γϛϡϨʔγϣϯʹΑΔՃϝΧχζϜղ໌ –
X-line ۙͷ meandering/Speiser ӡಈ [Speiser, 1965] – pileup ྖҬͰͷ ∇BυϦϑτ/ۂυϦϑτ [Hoshino et al., 2001 JGR] • ୯Ұͳ X-line Λ༩͑ΔγϛϡϨʔγϣϯϞσϧ͕ओྲྀ X-line pileup ྖҬ
ෳͷ X-line Λܗ͢ΔϦίωΫγϣϯ 7 Chen et al. (2007) ຊݚڀͷత ෳͷ
X-line Λܗ͢Δ࣓ؾϦίωΫ γϣϯͰͷిࢠՃϝΧχζϜΛղ໌͢Δ • ٿ࣓ؾݍඌ෦ଠཅ෩தͰ؍ଌ͞ΕΔ • X-line ؒͷด࣓ͨ͡ྗઢɿ࣓ؾౡ – ؍ଌɿ࣓ؾౡͱߴΤωϧΪʔిࢠ [Chen et al., 2007] – ࣓ؾౡ߹ମ͢Δ [Finn and Kaw, 1977] – γϛϡϨʔγϣϯɿ࣓ؾౡ߹ମͱిࢠՃ [Saito and Sakai, 2006] ࣓ؾౡ X-line
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 8
εʔύʔίϯϐϡʔλ 9 ӉՊֶݚڀຊ෦ Space Science Simulator (SSS) JAXA
ཻࢠγϛϡϨʔγϣϯ • Maxwell ํఔࣜ • ཻࢠͷӡಈํఔࣜ 10 ∇×B = cµ0
J+ E /c ∇×E = ʵ B /c m v = q(E + v×B/cγ) m = γm0 γ = (1-v2/c2)-1/2 ཻࢠҠಈ F → v → x ిՙɾిྲྀີ x → ρ, v → J Maxwell ํఔࣜ ρ, J → E , B ӡಈํఔࣜ E , B → F ɾ ɾ ɾ PIC (particle in-cell) ๏
γϛϡϨʔγϣϯઃఆ 11 ॳظ݅ɿHarris ܕిྲྀ n(z) = n0 /cosh2(z/d) + n1
Bx (z) = B0 tanh(z/d) Bx n z z 2 ࣍ݩγϛϡϨʔγϣϯ x z y Lx Lz Bx
1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4. ύϥϝʔλઃఆґଘੑ
5. ݁ ࣍ 12
݁Ռɿ୯Ұͳ X-line Λ༩͑Δ߹ 13 ne /n0 0 1 48 24
0 0 12 -12 x /λi z /λi ిࢠີ
݁Ռɿෳͷ X-line Λ༩͑Δ߹ 14 ne /n0 0 1 48 24
0 0 12 -12 x /λi z /λi ిࢠີ
࣓ؾౡ߹ମͷൃల 15 • Lx=48 nm=8 Ͱ࣓ؾౡ 8→2 , 2→1 ͷ̎ஈ֊߹ମ
࣓ؾதੑ໘ (z=0) Ͱͷిࢠີ
࣓ؾౡ߹ମͱిࢠՃ 16 ࣓ؾதੑ໘ (z=0) Ͱͷిࢠີ ΤωϧΪʔεϖΫτϧ ΤωϧΪʔɿε=γ-1 • 1ஈ֊߹ମ (8→2)
ʹେ෯ʹΤωϧΪʔ૿Ճ • ߹ମͷ߹͍ؒ(t=30ʙ34) ΄ͱΜͲΤωϧΪʔ૿Ճͳ͠ • ిࢠՃ࣓ؾౡ߹ମʹରԠ͢Δ
ߴΤωϧΪʔిࢠͷۭؒ <#> 17 0ɹɹ ɹɹ ɹ80 counts / cell Ωi
T = 40 Ωi T = 20 Ωi T = 30 Ωi T = 10 ߴΤωϧΪʔ (ε > 1) ిࢠ • ୯Ұͳ X-line ͷ߹ɺ࣓ؾౡΛ ғΉϦϯάঢ়Λܗ • ઌߦݚڀͰಉ༷ͷߏ
ߴΤωϧΪʔిࢠͷۭؒ 18 Ωi T = 20 Ωi T =30 Ωi
T = 34 Ωi T = 38 0ɹ ɹ80 Counts / cell Ωi T = 40 Ωi T = 50 • 2 ஈ֊߹ମʹΑΓ̎ॏϦϯάঢ়Λܗ ߴΤωϧΪʔ (ε > 1) ిࢠ
ిࢠՃྖҬͷಛఆ 19 • ి͕ిࢠʹ୯Ґ࣌ؒ͋ͨΓʹ༩͑ΔΤωϧΪʔɹJeɾE • JeɾE ͕େ͖͍ྖҬʢԼਤͷ͍ྖҬʣిࢠՃྖҬ • X-line, pileup
ྖҬʹՃ࣓͑ؾౡ߹ମྖҬՃྖҬ
࣓ؾౡ߹ମྖҬͰͷՃ 20 Ωi T = 30 Ωi T = 34
Ωi T = 38 • ࣓ؾౡ߹ମྖҬͰΤωϧΪʔεϖΫτϧΛऔಘ • ࣓ؾౡ߹ମ࣌ʹΤωϧΪʔ૿Ճ
࣓ؾౡ߹ମྖҬͰͷՃ 21 Ey Vey 0.0 2 -0.09 0 5 0
-3 • X-line ͱಉ༷ͷߏ • Ey ͰՃ • ࣓ؾౡ߹ମ࣌ʹܗ͢Δ X-line ͰՃ -12 12 0 z x z y Vex Vey
Ճཻࢠ(ε>25)ͷيಓ 22 X-line ࣓ؾౡ߹ମ pileup energy - time energy -
x z- x • 30ݸͷߴΤωϧΪʔ(ε>25)ిࢠͷཻࢠيಓΛௐͨ • શͯͷిࢠ X-line ͰՃΛड͚ͨ • ଟ͘ͷిࢠ X-line ͷޙʹpileup ྖҬ and/or ࣓ؾౡ߹ ମྖҬͰՃΛड͚͍ͯͨ ΤωϧΪʔɿε=γ-1
࣍ 23 1. ং 2. γϛϡϨʔγϣϯ 3. Multiple X-line ͷޮՌ
4. ύϥϝʔλઃఆґଘੑ – ܭࢉྖҬͷେ͖͞ґଘੑ 5. ݁
ܭࢉྖҬͷେ͖͞ґଘੑ 24 ܭࢉ ܭࢉྖҬͷେ͖͞ Lx × Lz (λi) ॳظͷ࣓ؾౡα Πζ(λi)
ॳظͷ࣓ؾౡ ̍ 48 × 32 6 8 ̎ 24 × 32 6 4 ̏ 96 × 64 6 16 • n ∝ ε-α ͰϑΟοςΟϯά
ܭࢉྖҬͷେ͖͞ґଘੑ • ϦίωΫγϣϯεέʔϧͱΤωϧΪʔ૿Ճ – શମɿ͓͓Αͦઢܗ – ࣓ؾౡ߹ମྖҬɿඇઢܗ • εέʔϧ֦େ → ߹ମྖҬͷՃେɹɹɹɹ →
ඇతిࢠͷੜ૿Ճ 25 શମ ࣓ؾౡ߹ମྖҬ ̑ഒ 2ഒ 2ഒ
1. ং 2. γϛϡϨʔγϣϯ 3. Multiple X-line ͷޮՌ 4. ύϥϝʔλઃఆґଘੑ
5. ݁ ࣍ 26
݁ • ࣓ؾౡͷଟஈ֊߹ମʹΑΓߴΤωϧΪʔి ࢠଟॏϦϯάΛܗ͢Δɿ؍ଌͷد ༩ • X-line ͱ pileup ྖҬʹՃ࣓͑ؾౡ߹ମྖҬ
ిࢠΛՃ͢Δɿ৽ͨͳཻࢠՃϝΧχζ Ϝ • ߴΤωϧΪʔిࢠͷੜෳͷՃྖ ҬʹΑΔଟஈ֊Ճ͕ॏཁ • ϦίωΫγϣϯͷεέʔϧ֦େͱͱʹ࣓ 27
݁ • X-line ͰՃͰ͖ ΔΤωϧΪʔʹ ݶք͕͋Δ • ͞ΒͳΔՃ pile ྖҬ
and/or ࣓ؾ ౡ߹ମྖҬͰಘΒ ΕΔ 28
֤ిࢠՃྖҬͰͷΤωϧΪʔ૿Ճ 29 ୯Ґ࣌ؒͨΓͷΤωϧΪʔ૿Ճ ΤωϧΪʔ૿Ճͷ૯ྔ • ՃྖҬຖʹΤωϧΪʔ૿ՃΛൺֱ • pileup ྖҬ͕શମͷΤωϧΪʔ૿Ճʹ࠷د༩͢Δ •
࣓ؾౡ߹ମՃଞͷྖҬͱൺͯখ͍͞ ∫JeɾE dSɹSɿ֤ՃྖҬͷ໘ੵ ∬JeɾE dSdtɹ
ܭࢉྖҬͷେ͖͞ґଘੑ • ిྲྀ໘ੵͰن֨Խ • ϦίωΫγϣϯͷεέʔϧ͕େ͖͘ͳ ΔʹͭΕΤωϧΪʔ͕૿Ճ͢Δ 30
ܭࢉྖҬͷେ͖͞ґଘੑ • X-line , pileup ྖҬɿ̎ഒ • ࣓ؾౡ߹ମྖҬɿ̐ഒ • ࣓ؾϦίωΫγϣϯͷεέʔϧ͕֦େ
͢Δͱ࣓ؾౡ߹ମྖҬͷد༩͕૿Ճ͢ Δɹ→ɹඇతిࢠͷੜͷ૿Ճ 31 ܭࢉ̏ɹ96 × 64 ܭࢉ̍ɹ48 × 32
pileup ྖҬͰͷՃ 32 • pileup ྖҬ (|Bz| େ) Ͱڧ͍ Ey
• ∇B υϦϑτ • ۂυϦϑτ ∇B v ∝ ʵB×∇B // ʵ y v ∝ ʵR×B // ʵ y x z y B R
࣓ؾౡ߹ମ vs. SXL 33 run Mass Ratio Space(λi ) nm
GF D(λi ) perturbation 1 100 48 × 32 8 0 0.5 GEM 2 100 48 × 32 8 0 0.5 GEM 3 100 48 × 32 SXL 0 0.5 Gaussian
ΨΠυ࣓ґଘੑ 34 run Mass Ratio Space(λi ) nm GF D(λi
) perturbation 1 100 48 × 32 8 0 0.5 GEM 5 100 48 × 32 8 0.5 0.5 GEM
݁ (2/2) • ߴΤωϧΪʔిࢠ X-line ͰͷՃޙʹ pileup ྖҬ and/or ࣓ؾౡ߹ମྖҬͰ͞Β
ʹՃΛड͚ͯੜ͞ΕΔ • ϦίωΫγϣϯͷεέʔϧͱͱʹ࣓ؾౡ ߹ମྖҬͰͷՃݦஶʹͳΓଟͷඇ తిࢠΛੜ͢Δ 35