Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
複数のX-lineを形成する磁気リコネクションでの電子加速 / Elecron Acceler...
Search
Tsubasa Yumura
February 05, 2008
Science
1
300
複数のX-lineを形成する磁気リコネクションでの電子加速 / Elecron Acceleration during Magnetic Reconnection with multiple X-lines
2008年度 修士論文発表会の発表資料
修士論文→
https://drive.google.com/open?id=0Bzb0bpXeRHYRWUptUEt3Ni11blk
Tsubasa Yumura
February 05, 2008
Tweet
Share
More Decks by Tsubasa Yumura
See All by Tsubasa Yumura
Human-Computer Interaction (HCI) 入門 #北海道LT大会 / HCI2023
yumu19
0
180
Tinkercadの電子回路シミュレータはいいぞ #北海道まったりLT大会 / Tinkercad
yumu19
1
3.1k
メイカーズ文化とシチズンサイエンス #JOSS2021 / Makers Culture and Citizen Science
yumu19
0
620
バーチャルSNS clusterを用いたイベント開催 / Event Organization with Virtual SNS “cluster”
yumu19
0
130
石川での6年間 / 6 years in Ishikawa
yumu19
0
290
NT札幌2020 in cluster 開催報告 #XRMTG / NT Sapporo 2020 in cluster
yumu19
0
91
Space Apps Challenge Tokyo 2020 開会式
yumu19
0
95
社会人博士のススメ
yumu19
2
7.4k
SpaceApps COVID-19 Challenge開会式
yumu19
0
140
Other Decks in Science
See All in Science
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
860
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
180
Coqで選択公理を形式化してみた
soukouki
0
300
Transformers are Universal in Context Learners
gpeyre
0
730
As We May Interact: Challenges and Opportunities for Next-Generation Human-Information Interaction
signer
PRO
0
380
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
270
位相的データ解析とその応用例
brainpadpr
1
1k
創薬における機械学習技術について
kanojikajino
16
5k
サメのはなし / How Sharks are born
naospon
0
2.5k
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
240
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.4k
Featured
See All Featured
Thoughts on Productivity
jonyablonski
69
4.5k
The Cost Of JavaScript in 2023
addyosmani
47
7.4k
Six Lessons from altMBA
skipperchong
27
3.6k
Faster Mobile Websites
deanohume
306
31k
How STYLIGHT went responsive
nonsquared
99
5.4k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
134
33k
GitHub's CSS Performance
jonrohan
1030
460k
Side Projects
sachag
452
42k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
RailsConf 2023
tenderlove
29
1k
Transcript
ෳͷ X-line Λܗ͢Δ ࣓ؾϦίωΫγϣϯͰͷిࢠՃ ౦ژେֶେֶӃɹཧֶܥݚڀՊ ٿՊֶઐ߈ɹӉՊֶେߨ࠲ ౻ຊݚڀࣨɹ౬ଜɹཌྷ
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 2
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 3
࣓ؾϦίωΫγϣϯ 4 ࣓ؾϦίωΫγϣϯɿ࣓ྗઢ͕ܨ͗ΘΔʢre- connectionʣ ESA ϛΫϩεέʔϧͰൃੜ 㱺 େنߏʹൃల ฏߦͳ࣓ͱڥքిྲྀ B
࣓ B ࣓ J ిྲྀ
ӉϓϥζϚதͷ࣓ؾϦίωΫγϣϯ 5 ଠཅίϩφϧʔϓ (NASA TRACE) ͔ʹӢ (NASA Chandra, Hubble) ٿ࣓ؾݍͱ
GEOTAIL Ӵ (JAXA) • ଠཅ • ࣓ؾݍڥքɾ࣓ؾݍඌ෦ • ߴΤωϧΪʔఱମ • ӉϓϥζϚͷΤωϧΪʔ ։์ݱͱͯ͠ॏཁ
࣓ؾϦίωΫγϣϯిࢠՃ 6 • ਓӴ(GEOTAIL, Cluster )ʹΑΔٿ࣓ؾݍͷͦͷ؍ ଌ • γϛϡϨʔγϣϯʹΑΔՃϝΧχζϜղ໌ –
X-line ۙͷ meandering/Speiser ӡಈ [Speiser, 1965] – pileup ྖҬͰͷ ∇BυϦϑτ/ۂυϦϑτ [Hoshino et al., 2001 JGR] • ୯Ұͳ X-line Λ༩͑ΔγϛϡϨʔγϣϯϞσϧ͕ओྲྀ X-line pileup ྖҬ
ෳͷ X-line Λܗ͢ΔϦίωΫγϣϯ 7 Chen et al. (2007) ຊݚڀͷత ෳͷ
X-line Λܗ͢Δ࣓ؾϦίωΫ γϣϯͰͷిࢠՃϝΧχζϜΛղ໌͢Δ • ٿ࣓ؾݍඌ෦ଠཅ෩தͰ؍ଌ͞ΕΔ • X-line ؒͷด࣓ͨ͡ྗઢɿ࣓ؾౡ – ؍ଌɿ࣓ؾౡͱߴΤωϧΪʔిࢠ [Chen et al., 2007] – ࣓ؾౡ߹ମ͢Δ [Finn and Kaw, 1977] – γϛϡϨʔγϣϯɿ࣓ؾౡ߹ମͱిࢠՃ [Saito and Sakai, 2006] ࣓ؾౡ X-line
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 8
εʔύʔίϯϐϡʔλ 9 ӉՊֶݚڀຊ෦ Space Science Simulator (SSS) JAXA
ཻࢠγϛϡϨʔγϣϯ • Maxwell ํఔࣜ • ཻࢠͷӡಈํఔࣜ 10 ∇×B = cµ0
J+ E /c ∇×E = ʵ B /c m v = q(E + v×B/cγ) m = γm0 γ = (1-v2/c2)-1/2 ཻࢠҠಈ F → v → x ిՙɾిྲྀີ x → ρ, v → J Maxwell ํఔࣜ ρ, J → E , B ӡಈํఔࣜ E , B → F ɾ ɾ ɾ PIC (particle in-cell) ๏
γϛϡϨʔγϣϯઃఆ 11 ॳظ݅ɿHarris ܕిྲྀ n(z) = n0 /cosh2(z/d) + n1
Bx (z) = B0 tanh(z/d) Bx n z z 2 ࣍ݩγϛϡϨʔγϣϯ x z y Lx Lz Bx
1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4. ύϥϝʔλઃఆґଘੑ
5. ݁ ࣍ 12
݁Ռɿ୯Ұͳ X-line Λ༩͑Δ߹ 13 ne /n0 0 1 48 24
0 0 12 -12 x /λi z /λi ిࢠີ
݁Ռɿෳͷ X-line Λ༩͑Δ߹ 14 ne /n0 0 1 48 24
0 0 12 -12 x /λi z /λi ిࢠີ
࣓ؾౡ߹ମͷൃల 15 • Lx=48 nm=8 Ͱ࣓ؾౡ 8→2 , 2→1 ͷ̎ஈ֊߹ମ
࣓ؾதੑ໘ (z=0) Ͱͷిࢠີ
࣓ؾౡ߹ମͱిࢠՃ 16 ࣓ؾதੑ໘ (z=0) Ͱͷిࢠີ ΤωϧΪʔεϖΫτϧ ΤωϧΪʔɿε=γ-1 • 1ஈ֊߹ମ (8→2)
ʹେ෯ʹΤωϧΪʔ૿Ճ • ߹ମͷ߹͍ؒ(t=30ʙ34) ΄ͱΜͲΤωϧΪʔ૿Ճͳ͠ • ిࢠՃ࣓ؾౡ߹ମʹରԠ͢Δ
ߴΤωϧΪʔిࢠͷۭؒ <#> 17 0ɹɹ ɹɹ ɹ80 counts / cell Ωi
T = 40 Ωi T = 20 Ωi T = 30 Ωi T = 10 ߴΤωϧΪʔ (ε > 1) ిࢠ • ୯Ұͳ X-line ͷ߹ɺ࣓ؾౡΛ ғΉϦϯάঢ়Λܗ • ઌߦݚڀͰಉ༷ͷߏ
ߴΤωϧΪʔిࢠͷۭؒ 18 Ωi T = 20 Ωi T =30 Ωi
T = 34 Ωi T = 38 0ɹ ɹ80 Counts / cell Ωi T = 40 Ωi T = 50 • 2 ஈ֊߹ମʹΑΓ̎ॏϦϯάঢ়Λܗ ߴΤωϧΪʔ (ε > 1) ిࢠ
ిࢠՃྖҬͷಛఆ 19 • ి͕ిࢠʹ୯Ґ࣌ؒ͋ͨΓʹ༩͑ΔΤωϧΪʔɹJeɾE • JeɾE ͕େ͖͍ྖҬʢԼਤͷ͍ྖҬʣిࢠՃྖҬ • X-line, pileup
ྖҬʹՃ࣓͑ؾౡ߹ମྖҬՃྖҬ
࣓ؾౡ߹ମྖҬͰͷՃ 20 Ωi T = 30 Ωi T = 34
Ωi T = 38 • ࣓ؾౡ߹ମྖҬͰΤωϧΪʔεϖΫτϧΛऔಘ • ࣓ؾౡ߹ମ࣌ʹΤωϧΪʔ૿Ճ
࣓ؾౡ߹ମྖҬͰͷՃ 21 Ey Vey 0.0 2 -0.09 0 5 0
-3 • X-line ͱಉ༷ͷߏ • Ey ͰՃ • ࣓ؾౡ߹ମ࣌ʹܗ͢Δ X-line ͰՃ -12 12 0 z x z y Vex Vey
Ճཻࢠ(ε>25)ͷيಓ 22 X-line ࣓ؾౡ߹ମ pileup energy - time energy -
x z- x • 30ݸͷߴΤωϧΪʔ(ε>25)ిࢠͷཻࢠيಓΛௐͨ • શͯͷిࢠ X-line ͰՃΛड͚ͨ • ଟ͘ͷిࢠ X-line ͷޙʹpileup ྖҬ and/or ࣓ؾౡ߹ ମྖҬͰՃΛड͚͍ͯͨ ΤωϧΪʔɿε=γ-1
࣍ 23 1. ং 2. γϛϡϨʔγϣϯ 3. Multiple X-line ͷޮՌ
4. ύϥϝʔλઃఆґଘੑ – ܭࢉྖҬͷେ͖͞ґଘੑ 5. ݁
ܭࢉྖҬͷେ͖͞ґଘੑ 24 ܭࢉ ܭࢉྖҬͷେ͖͞ Lx × Lz (λi) ॳظͷ࣓ؾౡα Πζ(λi)
ॳظͷ࣓ؾౡ ̍ 48 × 32 6 8 ̎ 24 × 32 6 4 ̏ 96 × 64 6 16 • n ∝ ε-α ͰϑΟοςΟϯά
ܭࢉྖҬͷେ͖͞ґଘੑ • ϦίωΫγϣϯεέʔϧͱΤωϧΪʔ૿Ճ – શମɿ͓͓Αͦઢܗ – ࣓ؾౡ߹ମྖҬɿඇઢܗ • εέʔϧ֦େ → ߹ମྖҬͷՃେɹɹɹɹ →
ඇతిࢠͷੜ૿Ճ 25 શମ ࣓ؾౡ߹ମྖҬ ̑ഒ 2ഒ 2ഒ
1. ং 2. γϛϡϨʔγϣϯ 3. Multiple X-line ͷޮՌ 4. ύϥϝʔλઃఆґଘੑ
5. ݁ ࣍ 26
݁ • ࣓ؾౡͷଟஈ֊߹ମʹΑΓߴΤωϧΪʔి ࢠଟॏϦϯάΛܗ͢Δɿ؍ଌͷد ༩ • X-line ͱ pileup ྖҬʹՃ࣓͑ؾౡ߹ମྖҬ
ిࢠΛՃ͢Δɿ৽ͨͳཻࢠՃϝΧχζ Ϝ • ߴΤωϧΪʔిࢠͷੜෳͷՃྖ ҬʹΑΔଟஈ֊Ճ͕ॏཁ • ϦίωΫγϣϯͷεέʔϧ֦େͱͱʹ࣓ 27
݁ • X-line ͰՃͰ͖ ΔΤωϧΪʔʹ ݶք͕͋Δ • ͞ΒͳΔՃ pile ྖҬ
and/or ࣓ؾ ౡ߹ମྖҬͰಘΒ ΕΔ 28
֤ిࢠՃྖҬͰͷΤωϧΪʔ૿Ճ 29 ୯Ґ࣌ؒͨΓͷΤωϧΪʔ૿Ճ ΤωϧΪʔ૿Ճͷ૯ྔ • ՃྖҬຖʹΤωϧΪʔ૿ՃΛൺֱ • pileup ྖҬ͕શମͷΤωϧΪʔ૿Ճʹ࠷د༩͢Δ •
࣓ؾౡ߹ମՃଞͷྖҬͱൺͯখ͍͞ ∫JeɾE dSɹSɿ֤ՃྖҬͷ໘ੵ ∬JeɾE dSdtɹ
ܭࢉྖҬͷେ͖͞ґଘੑ • ిྲྀ໘ੵͰن֨Խ • ϦίωΫγϣϯͷεέʔϧ͕େ͖͘ͳ ΔʹͭΕΤωϧΪʔ͕૿Ճ͢Δ 30
ܭࢉྖҬͷେ͖͞ґଘੑ • X-line , pileup ྖҬɿ̎ഒ • ࣓ؾౡ߹ମྖҬɿ̐ഒ • ࣓ؾϦίωΫγϣϯͷεέʔϧ͕֦େ
͢Δͱ࣓ؾౡ߹ମྖҬͷد༩͕૿Ճ͢ Δɹ→ɹඇతిࢠͷੜͷ૿Ճ 31 ܭࢉ̏ɹ96 × 64 ܭࢉ̍ɹ48 × 32
pileup ྖҬͰͷՃ 32 • pileup ྖҬ (|Bz| େ) Ͱڧ͍ Ey
• ∇B υϦϑτ • ۂυϦϑτ ∇B v ∝ ʵB×∇B // ʵ y v ∝ ʵR×B // ʵ y x z y B R
࣓ؾౡ߹ମ vs. SXL 33 run Mass Ratio Space(λi ) nm
GF D(λi ) perturbation 1 100 48 × 32 8 0 0.5 GEM 2 100 48 × 32 8 0 0.5 GEM 3 100 48 × 32 SXL 0 0.5 Gaussian
ΨΠυ࣓ґଘੑ 34 run Mass Ratio Space(λi ) nm GF D(λi
) perturbation 1 100 48 × 32 8 0 0.5 GEM 5 100 48 × 32 8 0.5 0.5 GEM
݁ (2/2) • ߴΤωϧΪʔిࢠ X-line ͰͷՃޙʹ pileup ྖҬ and/or ࣓ؾౡ߹ମྖҬͰ͞Β
ʹՃΛड͚ͯੜ͞ΕΔ • ϦίωΫγϣϯͷεέʔϧͱͱʹ࣓ؾౡ ߹ମྖҬͰͷՃݦஶʹͳΓଟͷඇ తిࢠΛੜ͢Δ 35