Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
複数のX-lineを形成する磁気リコネクションでの電子加速 / Elecron Acceler...
Search
Tsubasa Yumura
February 05, 2008
Science
1
270
複数のX-lineを形成する磁気リコネクションでの電子加速 / Elecron Acceleration during Magnetic Reconnection with multiple X-lines
2008年度 修士論文発表会の発表資料
修士論文→
https://drive.google.com/open?id=0Bzb0bpXeRHYRWUptUEt3Ni11blk
Tsubasa Yumura
February 05, 2008
Tweet
Share
More Decks by Tsubasa Yumura
See All by Tsubasa Yumura
Human-Computer Interaction (HCI) 入門 #北海道LT大会 / HCI2023
yumu19
0
160
Tinkercadの電子回路シミュレータはいいぞ #北海道まったりLT大会 / Tinkercad
yumu19
1
3k
メイカーズ文化とシチズンサイエンス #JOSS2021 / Makers Culture and Citizen Science
yumu19
0
600
バーチャルSNS clusterを用いたイベント開催 / Event Organization with Virtual SNS “cluster”
yumu19
0
120
石川での6年間 / 6 years in Ishikawa
yumu19
0
290
NT札幌2020 in cluster 開催報告 #XRMTG / NT Sapporo 2020 in cluster
yumu19
0
81
Space Apps Challenge Tokyo 2020 開会式
yumu19
0
92
社会人博士のススメ
yumu19
2
7.3k
SpaceApps COVID-19 Challenge開会式
yumu19
0
140
Other Decks in Science
See All in Science
Online Feedback Optimization
floriandoerfler
0
520
ベイズのはなし
techmathproject
0
340
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
30k
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
620
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
190
機械学習を支える連続最適化
nearme_tech
PRO
1
180
私たちのプロダクトにとってのよいテスト/good test for our products
camel_404
0
200
拡散モデルの原理紹介
brainpadpr
3
5.2k
Healthcare Innovation through Business Entrepreneurship
clintwinters
0
140
LIMEを用いた判断根拠の可視化
kentaitakura
0
370
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
PRO
0
260
Introduction to Graph Neural Networks
joisino
PRO
4
2.1k
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
How STYLIGHT went responsive
nonsquared
95
5.2k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.3k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.3k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Thoughts on Productivity
jonyablonski
67
4.4k
Building Applications with DynamoDB
mza
91
6.1k
A designer walks into a library…
pauljervisheath
204
24k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Transcript
ෳͷ X-line Λܗ͢Δ ࣓ؾϦίωΫγϣϯͰͷిࢠՃ ౦ژେֶେֶӃɹཧֶܥݚڀՊ ٿՊֶઐ߈ɹӉՊֶେߨ࠲ ౻ຊݚڀࣨɹ౬ଜɹཌྷ
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 2
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 3
࣓ؾϦίωΫγϣϯ 4 ࣓ؾϦίωΫγϣϯɿ࣓ྗઢ͕ܨ͗ΘΔʢre- connectionʣ ESA ϛΫϩεέʔϧͰൃੜ 㱺 େنߏʹൃల ฏߦͳ࣓ͱڥքిྲྀ B
࣓ B ࣓ J ిྲྀ
ӉϓϥζϚதͷ࣓ؾϦίωΫγϣϯ 5 ଠཅίϩφϧʔϓ (NASA TRACE) ͔ʹӢ (NASA Chandra, Hubble) ٿ࣓ؾݍͱ
GEOTAIL Ӵ (JAXA) • ଠཅ • ࣓ؾݍڥքɾ࣓ؾݍඌ෦ • ߴΤωϧΪʔఱମ • ӉϓϥζϚͷΤωϧΪʔ ։์ݱͱͯ͠ॏཁ
࣓ؾϦίωΫγϣϯిࢠՃ 6 • ਓӴ(GEOTAIL, Cluster )ʹΑΔٿ࣓ؾݍͷͦͷ؍ ଌ • γϛϡϨʔγϣϯʹΑΔՃϝΧχζϜղ໌ –
X-line ۙͷ meandering/Speiser ӡಈ [Speiser, 1965] – pileup ྖҬͰͷ ∇BυϦϑτ/ۂυϦϑτ [Hoshino et al., 2001 JGR] • ୯Ұͳ X-line Λ༩͑ΔγϛϡϨʔγϣϯϞσϧ͕ओྲྀ X-line pileup ྖҬ
ෳͷ X-line Λܗ͢ΔϦίωΫγϣϯ 7 Chen et al. (2007) ຊݚڀͷత ෳͷ
X-line Λܗ͢Δ࣓ؾϦίωΫ γϣϯͰͷిࢠՃϝΧχζϜΛղ໌͢Δ • ٿ࣓ؾݍඌ෦ଠཅ෩தͰ؍ଌ͞ΕΔ • X-line ؒͷด࣓ͨ͡ྗઢɿ࣓ؾౡ – ؍ଌɿ࣓ؾౡͱߴΤωϧΪʔిࢠ [Chen et al., 2007] – ࣓ؾౡ߹ମ͢Δ [Finn and Kaw, 1977] – γϛϡϨʔγϣϯɿ࣓ؾౡ߹ମͱిࢠՃ [Saito and Sakai, 2006] ࣓ؾౡ X-line
࣍ 1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4.
ύϥϝʔλઃఆґଘੑ 5. ݁ 8
εʔύʔίϯϐϡʔλ 9 ӉՊֶݚڀຊ෦ Space Science Simulator (SSS) JAXA
ཻࢠγϛϡϨʔγϣϯ • Maxwell ํఔࣜ • ཻࢠͷӡಈํఔࣜ 10 ∇×B = cµ0
J+ E /c ∇×E = ʵ B /c m v = q(E + v×B/cγ) m = γm0 γ = (1-v2/c2)-1/2 ཻࢠҠಈ F → v → x ిՙɾిྲྀີ x → ρ, v → J Maxwell ํఔࣜ ρ, J → E , B ӡಈํఔࣜ E , B → F ɾ ɾ ɾ PIC (particle in-cell) ๏
γϛϡϨʔγϣϯઃఆ 11 ॳظ݅ɿHarris ܕిྲྀ n(z) = n0 /cosh2(z/d) + n1
Bx (z) = B0 tanh(z/d) Bx n z z 2 ࣍ݩγϛϡϨʔγϣϯ x z y Lx Lz Bx
1. ং 2. γϛϡϨʔγϣϯ 3. ෳͷ X-line ͷޮՌ 4. ύϥϝʔλઃఆґଘੑ
5. ݁ ࣍ 12
݁Ռɿ୯Ұͳ X-line Λ༩͑Δ߹ 13 ne /n0 0 1 48 24
0 0 12 -12 x /λi z /λi ిࢠີ
݁Ռɿෳͷ X-line Λ༩͑Δ߹ 14 ne /n0 0 1 48 24
0 0 12 -12 x /λi z /λi ిࢠີ
࣓ؾౡ߹ମͷൃల 15 • Lx=48 nm=8 Ͱ࣓ؾౡ 8→2 , 2→1 ͷ̎ஈ֊߹ମ
࣓ؾதੑ໘ (z=0) Ͱͷిࢠີ
࣓ؾౡ߹ମͱిࢠՃ 16 ࣓ؾதੑ໘ (z=0) Ͱͷిࢠີ ΤωϧΪʔεϖΫτϧ ΤωϧΪʔɿε=γ-1 • 1ஈ֊߹ମ (8→2)
ʹେ෯ʹΤωϧΪʔ૿Ճ • ߹ମͷ߹͍ؒ(t=30ʙ34) ΄ͱΜͲΤωϧΪʔ૿Ճͳ͠ • ిࢠՃ࣓ؾౡ߹ମʹରԠ͢Δ
ߴΤωϧΪʔిࢠͷۭؒ <#> 17 0ɹɹ ɹɹ ɹ80 counts / cell Ωi
T = 40 Ωi T = 20 Ωi T = 30 Ωi T = 10 ߴΤωϧΪʔ (ε > 1) ిࢠ • ୯Ұͳ X-line ͷ߹ɺ࣓ؾౡΛ ғΉϦϯάঢ়Λܗ • ઌߦݚڀͰಉ༷ͷߏ
ߴΤωϧΪʔిࢠͷۭؒ 18 Ωi T = 20 Ωi T =30 Ωi
T = 34 Ωi T = 38 0ɹ ɹ80 Counts / cell Ωi T = 40 Ωi T = 50 • 2 ஈ֊߹ମʹΑΓ̎ॏϦϯάঢ়Λܗ ߴΤωϧΪʔ (ε > 1) ిࢠ
ిࢠՃྖҬͷಛఆ 19 • ి͕ిࢠʹ୯Ґ࣌ؒ͋ͨΓʹ༩͑ΔΤωϧΪʔɹJeɾE • JeɾE ͕େ͖͍ྖҬʢԼਤͷ͍ྖҬʣిࢠՃྖҬ • X-line, pileup
ྖҬʹՃ࣓͑ؾౡ߹ମྖҬՃྖҬ
࣓ؾౡ߹ମྖҬͰͷՃ 20 Ωi T = 30 Ωi T = 34
Ωi T = 38 • ࣓ؾౡ߹ମྖҬͰΤωϧΪʔεϖΫτϧΛऔಘ • ࣓ؾౡ߹ମ࣌ʹΤωϧΪʔ૿Ճ
࣓ؾౡ߹ମྖҬͰͷՃ 21 Ey Vey 0.0 2 -0.09 0 5 0
-3 • X-line ͱಉ༷ͷߏ • Ey ͰՃ • ࣓ؾౡ߹ମ࣌ʹܗ͢Δ X-line ͰՃ -12 12 0 z x z y Vex Vey
Ճཻࢠ(ε>25)ͷيಓ 22 X-line ࣓ؾౡ߹ମ pileup energy - time energy -
x z- x • 30ݸͷߴΤωϧΪʔ(ε>25)ిࢠͷཻࢠيಓΛௐͨ • શͯͷిࢠ X-line ͰՃΛड͚ͨ • ଟ͘ͷిࢠ X-line ͷޙʹpileup ྖҬ and/or ࣓ؾౡ߹ ମྖҬͰՃΛड͚͍ͯͨ ΤωϧΪʔɿε=γ-1
࣍ 23 1. ং 2. γϛϡϨʔγϣϯ 3. Multiple X-line ͷޮՌ
4. ύϥϝʔλઃఆґଘੑ – ܭࢉྖҬͷେ͖͞ґଘੑ 5. ݁
ܭࢉྖҬͷେ͖͞ґଘੑ 24 ܭࢉ ܭࢉྖҬͷେ͖͞ Lx × Lz (λi) ॳظͷ࣓ؾౡα Πζ(λi)
ॳظͷ࣓ؾౡ ̍ 48 × 32 6 8 ̎ 24 × 32 6 4 ̏ 96 × 64 6 16 • n ∝ ε-α ͰϑΟοςΟϯά
ܭࢉྖҬͷେ͖͞ґଘੑ • ϦίωΫγϣϯεέʔϧͱΤωϧΪʔ૿Ճ – શମɿ͓͓Αͦઢܗ – ࣓ؾౡ߹ମྖҬɿඇઢܗ • εέʔϧ֦େ → ߹ମྖҬͷՃେɹɹɹɹ →
ඇతిࢠͷੜ૿Ճ 25 શମ ࣓ؾౡ߹ମྖҬ ̑ഒ 2ഒ 2ഒ
1. ং 2. γϛϡϨʔγϣϯ 3. Multiple X-line ͷޮՌ 4. ύϥϝʔλઃఆґଘੑ
5. ݁ ࣍ 26
݁ • ࣓ؾౡͷଟஈ֊߹ମʹΑΓߴΤωϧΪʔి ࢠଟॏϦϯάΛܗ͢Δɿ؍ଌͷد ༩ • X-line ͱ pileup ྖҬʹՃ࣓͑ؾౡ߹ମྖҬ
ిࢠΛՃ͢Δɿ৽ͨͳཻࢠՃϝΧχζ Ϝ • ߴΤωϧΪʔిࢠͷੜෳͷՃྖ ҬʹΑΔଟஈ֊Ճ͕ॏཁ • ϦίωΫγϣϯͷεέʔϧ֦େͱͱʹ࣓ 27
݁ • X-line ͰՃͰ͖ ΔΤωϧΪʔʹ ݶք͕͋Δ • ͞ΒͳΔՃ pile ྖҬ
and/or ࣓ؾ ౡ߹ମྖҬͰಘΒ ΕΔ 28
֤ిࢠՃྖҬͰͷΤωϧΪʔ૿Ճ 29 ୯Ґ࣌ؒͨΓͷΤωϧΪʔ૿Ճ ΤωϧΪʔ૿Ճͷ૯ྔ • ՃྖҬຖʹΤωϧΪʔ૿ՃΛൺֱ • pileup ྖҬ͕શମͷΤωϧΪʔ૿Ճʹ࠷د༩͢Δ •
࣓ؾౡ߹ମՃଞͷྖҬͱൺͯখ͍͞ ∫JeɾE dSɹSɿ֤ՃྖҬͷ໘ੵ ∬JeɾE dSdtɹ
ܭࢉྖҬͷେ͖͞ґଘੑ • ిྲྀ໘ੵͰن֨Խ • ϦίωΫγϣϯͷεέʔϧ͕େ͖͘ͳ ΔʹͭΕΤωϧΪʔ͕૿Ճ͢Δ 30
ܭࢉྖҬͷେ͖͞ґଘੑ • X-line , pileup ྖҬɿ̎ഒ • ࣓ؾౡ߹ମྖҬɿ̐ഒ • ࣓ؾϦίωΫγϣϯͷεέʔϧ͕֦େ
͢Δͱ࣓ؾౡ߹ମྖҬͷد༩͕૿Ճ͢ Δɹ→ɹඇతిࢠͷੜͷ૿Ճ 31 ܭࢉ̏ɹ96 × 64 ܭࢉ̍ɹ48 × 32
pileup ྖҬͰͷՃ 32 • pileup ྖҬ (|Bz| େ) Ͱڧ͍ Ey
• ∇B υϦϑτ • ۂυϦϑτ ∇B v ∝ ʵB×∇B // ʵ y v ∝ ʵR×B // ʵ y x z y B R
࣓ؾౡ߹ମ vs. SXL 33 run Mass Ratio Space(λi ) nm
GF D(λi ) perturbation 1 100 48 × 32 8 0 0.5 GEM 2 100 48 × 32 8 0 0.5 GEM 3 100 48 × 32 SXL 0 0.5 Gaussian
ΨΠυ࣓ґଘੑ 34 run Mass Ratio Space(λi ) nm GF D(λi
) perturbation 1 100 48 × 32 8 0 0.5 GEM 5 100 48 × 32 8 0.5 0.5 GEM
݁ (2/2) • ߴΤωϧΪʔిࢠ X-line ͰͷՃޙʹ pileup ྖҬ and/or ࣓ؾౡ߹ମྖҬͰ͞Β
ʹՃΛड͚ͯੜ͞ΕΔ • ϦίωΫγϣϯͷεέʔϧͱͱʹ࣓ؾౡ ߹ମྖҬͰͷՃݦஶʹͳΓଟͷඇ తిࢠΛੜ͢Δ 35