除了了專注於模型訓練外,建構 ML ⼯工作流程有多個步驟,包括任務的監控、⽇日誌的回收、超參參數的選擇與 優化,模型的開發與彙整、資料預處理理、特徵提取等等,都是流程中不可或缺的部分。 Building ML Products 7 繁瑣的資料預處理理 Developer 建構模型 Building a Model Logging Data Ingestion Data Analysis Data Transform -ation Data Validation Data Splitting Trainer Model Validation Training At Scale Roll-out Serving Monitoring
LF Deep Learning Foundation 深度學習基⾦金金會(LF Deep Learning Foundation,LFFoundation)的願景是希望為⼈人 ⼯工智慧、機器學習和深度學習⽅方⾯面提供長期策略略和⽀支持,並協助維護開源創新,同 時努⼒力力使這些關鍵新技術專案能夠讓全世界各地的開發⼈人員和資料科學家使⽤用。 15 https://landscape.lfdl.io/
Kubernetes Kubernetes 是 Google 開源的容器(Container)分散式管理理系統,是 Google Borg ⼗十幾年年以來來⼤大規模應⽤用容器技術的經驗累積和昇華的⼀一個重要成果,是建於 OCI Runtime 之上的容器叢集排程系統,簡稱為 k8s( )。 25 Stars 51850+ Commits 77692+ Contributors 2112+ “Kubernetes is becoming the Linux
Kubernetes managing resources 透過 Kubernetes 和 containers來管理操作系統和硬體資源 Ref: How to Get Started with Kubeflow https://medium.com/@amina.alsherif/how-to-get-started-with-kubeflow
Use Kubeflow Ref: How to Get Started with Kubeflow https://medium.com/@amina.alsherif/how-to-get-started-with-kubeflow Kubeflow 透過kubeflow在Kubernetes上︐簡化移植和擴展機器學習(ML)工作流程的部署
Kubeflow 負責管理理任務流程 只需要擔心如何透過Kubernetes 調整參數和設定目標︐來進行ML模型訓練 Ref: How to Get Started with Kubeflow https://medium.com/@amina.alsherif/how-to-get-started-with-kubeflow
42 Libraries and CLIs - focus on end users Fairing • 是⼀一個 Python package,可以輕鬆地在Kubeflow或Google AI Platform上訓練和部署ML模型 1. Preprocesses the code, converting notebooks or gathering source or data dependencies 2.Builds and uploads a Docker image 3.Deploys a job using Kubernetes or Kubeflow primitives Libraries and CLIs - Focus on end users Arena kfctl kubectl fairing Preprocessor Builder Deployer Notebook Function Python Append Docker Cluster Job TfJob Serving Train and Predict