Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ログから生まれる施策 / actions born from logs
Search
Hiroka Zaitsu
December 13, 2016
Technology
2
5.9k
ログから生まれる施策 / actions born from logs
WEB DIRECTORS SESSION Vol.2
http://peatix.com/event/219845
Hiroka Zaitsu
December 13, 2016
Tweet
Share
More Decks by Hiroka Zaitsu
See All by Hiroka Zaitsu
GMOペパボのデータ基盤とデータ活用の現在地 / Current State of GMO Pepabo's Data Infrastructure and Data Utilization
zaimy
3
290
ビジネス職が分析も担う事業部制組織でのデータ活用の仕組みづくり / Enabling Data Analytics in Business-Led Divisional Organizations
zaimy
1
600
Vertex AI Matching Engine と CLIP を使って EC サービスの類似画像検索機能を作る / Development of similar image search function for EC services using Vertex AI Matching Engine and CLIP
zaimy
0
760
BigQuery の日本語データを Dataflow と Vertex AI でトピックモデリング / Topic modeling of Japanese data in BigQuery with Dataflow and Vertex AI
zaimy
1
6k
データサイエンティストの仕事紹介 / Data Scientist Job Introduction
zaimy
1
620
GMOペパボのサービスと研究開発を支えるデータ基盤の裏側 / Inside Story of Data Infrastructure Supporting GMO Pepabo's Services and R&D
zaimy
1
1.8k
正則化とロジスティック回帰/machine-learning-lecture-regularization-and-logistic-regression
zaimy
0
8.8k
ECサイトにおける閲覧履歴を用いた購買に繋がる行動の変化検出 / Change Detection in Behavior Followed by Possible Purchase Using Electronic Commerce Site Browsing History
zaimy
1
950
trinity で Cloud Composer に ワークフローを簡単デプロイ / Easy workflow deployment to Cloud Composer with trinity
zaimy
0
890
Other Decks in Technology
See All in Technology
エンタメとAIのための3Dパラレルワールド構築(GPU UNITE 2025 特別講演)
pfn
PRO
0
460
データ戦略部門 紹介資料
sansan33
PRO
1
3.8k
Codexとも仲良く。CodeRabbit CLIの紹介
moongift
PRO
1
240
これがLambdaレス時代のChatOpsだ!実例で学ぶAmazon Q Developerカスタムアクション活用法
iwamot
PRO
8
1.1k
それでも私が品質保証プロセスを作り続ける理由 #テストラジオ / Why I still continue to create QA process
pineapplecandy
0
130
AgentCon Accra: Ctrl + Alt + Assist: AI Agents Edition
bethany
0
110
Introduction to Bill One Development Engineer
sansan33
PRO
0
300
プレーリーカードを活用しよう❗❗デジタル名刺交換からはじまるイベント会場交流のススメ
tsukaman
0
180
CoRL 2025 Survey
harukiabe
1
210
RDS の負荷が高い場合に AWS で取りうる具体策 N 連発/a-series-of-specific-countermeasures-available-on-aws-when-rds-is-under-high-load
emiki
5
3.7k
Click A, Buy B: Rethinking Conversion Attribution in ECommerce Recommendations
lycorptech_jp
PRO
0
100
Introdução a Service Mesh usando o Istio
aeciopires
0
190
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
How GitHub (no longer) Works
holman
315
140k
Faster Mobile Websites
deanohume
310
31k
Rails Girls Zürich Keynote
gr2m
95
14k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
620
Thoughts on Productivity
jonyablonski
70
4.9k
Visualization
eitanlees
149
16k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Unsuck your backbone
ammeep
671
58k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Transcript
ϖύϘͷϩάz׆༻zج൫ʮ#JHGPPUʯ ࡒେՆ(.01FQBCP *OD 8&#%*3&$50344&44*0/7PM ϩά͔Βੜ·ΕΔࢪࡦ
σʔλαΠΤϯςΟετσΟϨΫλʔ ࡒେՆ![BJNZ NJOOFࣄۀ෦
ϋϯυϝΠυϚʔέοτNJOOF IUUQTNJOOFDPN
࣍ w8FCαʔϏεͷߦಈϩά wϖύϘͷϩάz׆༻zج൫ʮ#JHGPPUʯ wࢪࡦͷ׆༻ྫ
8FCαʔϏεͷߦಈϩά
8FCαʔϏεͷߦಈϩά wϢʔβʔ͕αʔϏεΛར༻ͨ͠ࡍͷཤྺ wʮ͍ͭʯʮ୭͕ʯʮԿΛʯߦͬͨͷ͔ w݁Ռ͚ͩͰͳͦ͘͜ʹࢸΔաఔɺ݁Ռ్தͰఘΊͯ͠·ͬͨϢʔ βʔͷߦಈ͔Δ
ߦಈϩάΛͬͯ ΑΓྑ͍αʔϏε!
׆༻·Ͱͷஈ֊ wऩूߦಈϩά͕ग़ྗ͞ΕɺऔΓ·ͱΊΒΕ͍ͯΔঢ়ଶ wੳऔΓ·ͱΊͨߦಈϩάΛࢹ֮ԽɺੳͰ͖Δঢ়ଶ w׆༻ੳͨ͠ߦಈϩάΛͱʹܧଓతͳαʔϏεվળ͕ߦ͍͑ͯΔঢ়ଶ
#JHGPPU IUUQTJDPOTDPN
#JHGPPU wϖύϘͷϩάz׆༻zج൫ w෯͍δϟϯϧͷ8FCαʔϏε wϋϯυϝΠυϚʔέοτNJOOF wωοτγϣοϓ࡞Χϥʔϛʔγϣοϓ wϩϦϙοϓʂϨϯλϧαʔόʔ wϩάऩू͔Β׆༻·Ͱͷ֤ஈ֊ʹ͓͍ͯ൚༻తʹར༻Ͱ͖Δશࣾج൫
#JHGPPU rack-bigfoot Service Request Activity log Services DB Attribute Big
Cube Cube https://speakerdeck.com/monochromegane/pepabo-log-infrastructure-bigfoot Bandit algorithm/ Recommendation Re-targeting Feedback Name identification BI/Visualize
ऩू
໊دͤ wαʔϏεͷΞΧϯτͱΫϥΠΞϯτʢɾϒϥβʣΛඥ͚ͮ wैདྷΫϥΠΞϯτ͝ͱͷܭଌ wະϩάΠϯঢ়ଶͷΞΧϯτͦͷޙϩάΠϯͨ͠λΠϛϯάͰաڈʹ Ḫͬͯඥ͚ͮΒΕΔ wαʔϏεΛލ͍ͩඥ͚ͮՄೳ
ੳ
#JH$VCFͱ$VCF w#JHGPPU্ͷશͯͷϩάΛ#JH$VCFʹू wੳͷΓޱʢσΟϝϯγϣϯͱϝδϟʔʣ͕ܾ·ͬͨΒ$VCFʹूܭ wྫʣ࣌ؒ͝ͱจֹۚ wߴͳࢀর͕Մೳ Activity Big Cube Cube HiveQL
SQL Dashboard Ad-hoc query Analyst Managers, Product owners, Promotion groups
ࢹ֮Խ w5BCMFBV wIUUQXXXUBCMFBVDPN wΞυϗοΫͳੳෳࡶͳσʔλ݁߹ʹ w3FEBTI wIUUQTSFEBTIJP w୭͕ࢀরͰ͖ΔμογϡϘʔυʹ
ύεੳ wίϯόʔδϣϯʹؔ͢Δੳͷ͏ͪɺܦ࿏ʢύεʣʹओ؟Λஔ͍ͨͷ wύεͷ࣌ؒ͞ྨܕ wΞτϦϏϡʔγϣϯϞσϧϖʔδͷग़ݱҐஔʹΑΓॏΈΛม͑Δ referrer landing last cv ??? Point
Analytics referrer landing last Path Analytics cv
ࢪࡦͷ׆༻
ϢʔβʔͷϦςϯγϣϯ wߦಈϩά͔ΒϢʔβʔΛநग़ wΧʔτʹ౸ୡ͕ͨ͠ങΘͳ͔ͬͨϢʔβʔʢ͍ΘΏΔΧʔτམͪʣ wظؒʹಉ͡࡞ΛԿݟ͍ͯΔϢʔβʔ wಛఆͷ݅ʹ߹க͢Εϓογϡ௨ϝʔϧͰϦςϯγϣϯ wϨγʔτϝʔϧͱಉͷ։෧ HiveQL Re-targeting
ࠂ࿈ܞ wߦಈϩά͔ΒϢʔβʔΛηάϝϯτ wϢʔβʔʹؔ࿈ੑͷߴ͍ࠂΛදࣔ wطʹϦʔνͨ͠ϢʔβʔʹࠂΛදࣔ͠ͳ͍ʢσϦλʔήςΟϯάʣ
όϯσΟοτΞϧΰϦζϜ w࡞ݕࡧը໘͔ΒͷརӹΛ࠷େԽ͍ͨ͠ w$53ͷҟͳΔύλʔϯͷ࡞ݕࡧΞϧΰϦζϜ wച্ʹର͢Δൺॏ͕ଟ͍ҝʹγεςϜมߋͷϦεΫ͕ߴ͍ w࠷ྑͷύλʔϯΛ͍ͳ͕ΒΑΓྑ͍ύλʔϯΛಈతʹ୳͢
όϯσΟοτΞϧΰϦζϜ w&QTJMPO(SFFEZ"MHPSJUIN w֬ Џ Ͱͦͷ࣌ͷ࠷ظ͕ߴ͍ύλʔϯΛ༻ʢ׆༻ʣ w֬ЏͰϥϯμϜʹબͨ͠ύλʔϯΛ༻ʢ୳ࡧʣ Activity Epsilon-Greedy algorithm User
1-ε: exploitation ε/pattern: exploration Click / Not click Import
όϯσΟοτΞϧΰϦζϜ wτϨʔυΦϑͷղܾ w׆༻͔Γ͍ͯ͠ΔͱݱࡏͷظΑΓྑ͍Λݟ͚ͭΒΕͳ͍ w୳ࡧ͔Γ͍ͯ͠Δͱظ͕ߴ͍͕ར༻͞Εͳ͍
Ϩίϝϯσʔγϣϯ wڠௐϑΟϧλϦϯάʹΑΔʮ͋ͳͨʹ͓͢͢Ίͷ࡞Ոʯ !NPOPDISPNFHBOFʮNJOOFNFFUT)JWFNBMMʯ IUUQTTQFBLFSEFDLDPNNPOPDISPNFHBOFQFQBCPNJOOFNBUSJYGBDUPSJ[BUJPOJOIJWFNBMM
ϩάz׆༻zج൫
ϩάz׆༻zج൫ wᶃਓ͕ؒੳ݁ՌΛݟͯߦ͏੩తͳʮ׆༻ʯ wࢪࡦͷਫ਼্ wᶄࣗಈԽ͞ΕͨϑΟʔυόοΫʹΑΔಈతͳʮ׆༻ʯ wͳΊΒ͔ͳγεςϜ