Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
深層学習は奔流に身をまかせ / Get Drowned in the Flood for De...
Search
Henry Cui
February 17, 2023
Technology
0
210
深層学習は奔流に身をまかせ / Get Drowned in the Flood for Deep Learning
Henry Cui
February 17, 2023
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
0
120
Direct Preference Optimization
zchenry
0
320
Diffusion Model with Perceptual Loss
zchenry
0
290
レンズの下のLLM / LLM under the Lens
zchenry
0
160
Go with the Prompt Flow
zchenry
0
140
Mojo Dojo
zchenry
1
180
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
450
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
190
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
94
Other Decks in Technology
See All in Technology
Amazon Aurora バージョンアップについて、改めて理解する ~バージョンアップ手法と文字コードへの影響~
smt7174
1
240
DevSecOps入門:Security Development Lifecycleによる開発プロセスのセキュリティ強化
yuriemori
0
230
2週に1度のビッグバンリリースをデイリーリリース化するまでの苦悩 ~急成長するスタートアップのリアルな裏側~
kworkdev
PRO
8
6.5k
パブリッククラウドのプロダクトマネジメントとアーキテクト
tagomoris
4
760
現実的なCompose化戦略 ~既存リスト画面の置き換え~
sansantech
PRO
0
160
SIEMによるセキュリティログの可視化と分析を通じた信頼性向上プロセスと実践
coconala_engineer
1
2.9k
論文紹介 ”Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG” @GDG Tokyo
shukob
0
270
Power BI は、レポート テーマにこだわろう!テーマのティア表付き
ohata_ds
0
120
Skip Skip Run Run Run ♫
temoki
0
360
地方企業がクラウドを活用するヒント
miu_crescent
PRO
1
110
Windows Server 2025 へのアップグレードではまった話
tamaiyutaro
2
260
EDRからERM: PFN-SIRTが関わるセキュリティとリスクへの取り組み
pfn
PRO
0
100
Featured
See All Featured
Practical Orchestrator
shlominoach
186
10k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Making Projects Easy
brettharned
116
6k
Six Lessons from altMBA
skipperchong
27
3.6k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Designing for Performance
lara
604
68k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Docker and Python
trallard
43
3.2k
Thoughts on Productivity
jonyablonski
68
4.4k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Transcript
深層学習は奔流に身をまかせ 機械学習の社会実装勉強会第20回 Henry 2023/2/18
モチベーション ▪ ペインポイント • 深層モデルの学習で望ましい効果を素早く得るのは難しい • 実データのラベルにノイズが多い • その問題点の一つに、過適合が挙げられる ▪
過適合を解消するための様々な正則化手法がある • weight decay や learning rate scheduler • Pytorchで簡単に使える ▪ 今日は最近の研究から、実用性が高い新しい正則化手法を 紹介する • 特に実装が楽 • まだあまり知られていない 2
紹介する論文 ▪ Do We Need Zero Training Loss After Achieving
Zero Training Error?, Ishida et al., ICML 2020 • Floodingという新しい正則化手法を導入 ▪ iFlood: A Stable and Effective Regularizer, Xie et al., ICLR 2022 • Floodingの計算式を少しだけ改良 3
Ishida et al., ICML 2020 ▪ モチベーション • 学習データでの損失を0まで学習を行ったほうが良いと言われる •
しかし、これは本当に必要なのか • 正則化手法は、学習データでの損失を過度に最小化しないための間 接的な手法と見なせる ▪ 直接学習損失の最小化を制限する手法:Flooding • 実装も簡単 • 学習損失は0じゃなくても、学習精度が100%の可能性もある 4
Ishida et al., ICML 2020 ▪ 提案法は以下の性質をすべて満たす初めての正則化手法 • 学習損失を直接制限する •
特定の問題ドメインに依存しない • 特定のタスクに依存しない • 特定のモデルに依存しない ▪ 提案法の仮設もシンプルで、「0の学習損失が有害」のみ ▪ 検証損失の二重降下に関する初めて研究 5
Ishida et al., ICML 2020 ▪ 人工データで有意な性能向上 6
Ishida et al., ICML 2020 ▪ 実データでも有意な性能向上 ▪ その他、Floodingによる勾配値の変化や解の平坦性なども調 査
7
Xie et al., ICLR 2022 ▪ Floodingにデータインスタンスの勾配が乖離する問題 • バッチで平均を取るので、同じバッチにある他のデータインスタンスの 損失に依存する
▪ 提案手法:絶対値をバッチで取るではなく、各データインスタン スレベルで取るので、indivisual Flood (iFlood)と呼ぶ ▪ 各手法のインスタンスの損失のヒストグラム 8
Xie et al., ICLR 2022 ▪ 確かに性能向上につながる ▪ その他も、勾配のノルムやノイズ耐性などを検証 9
まとめ ▪ 実用性高い正則化手法のFloodingとその改良版のiFlood ▪ 実装がシンプルで試しやすい 10