Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
深層学習は奔流に身をまかせ / Get Drowned in the Flood for De...
Search
Henry Cui
February 17, 2023
Technology
0
200
深層学習は奔流に身をまかせ / Get Drowned in the Flood for Deep Learning
Henry Cui
February 17, 2023
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
0
86
Direct Preference Optimization
zchenry
0
280
Diffusion Model with Perceptual Loss
zchenry
0
240
レンズの下のLLM / LLM under the Lens
zchenry
0
150
Go with the Prompt Flow
zchenry
0
140
Mojo Dojo
zchenry
1
180
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
380
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
170
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
85
Other Decks in Technology
See All in Technology
開発生産性を上げながらビジネスも30倍成長させてきたチームの姿
kamina_zzz
2
1.7k
Amazon Personalizeのレコメンドシステム構築、実際何するの?〜大体10分で具体的なイメージをつかむ〜
kniino
1
100
Incident Response Practices: Waroom's Features and Future Challenges
rrreeeyyy
0
160
テストコード品質を高めるためにMutation Testingライブラリ・Strykerを実戦導入してみた話
ysknsid25
7
2.6k
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
3
380
【令和最新版】AWS Direct Connectと愉快なGWたちのおさらい
minorun365
PRO
5
750
CysharpのOSS群から見るModern C#の現在地
neuecc
2
3.2k
Python(PYNQ)がテーマのAMD主催のFPGAコンテストに参加してきた
iotengineer22
0
470
誰も全体を知らない ~ ロールの垣根を超えて引き上げる開発生産性 / Boosting Development Productivity Across Roles
kakehashi
1
220
サイバーセキュリティと認知バイアス:対策の隙を埋める心理学的アプローチ
shumei_ito
0
380
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
370
10XにおけるData Contractの導入について: Data Contract事例共有会
10xinc
5
600
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Fireside Chat
paigeccino
34
3k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
Practical Orchestrator
shlominoach
186
10k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
26
2.1k
Happy Clients
brianwarren
98
6.7k
Transcript
深層学習は奔流に身をまかせ 機械学習の社会実装勉強会第20回 Henry 2023/2/18
モチベーション ▪ ペインポイント • 深層モデルの学習で望ましい効果を素早く得るのは難しい • 実データのラベルにノイズが多い • その問題点の一つに、過適合が挙げられる ▪
過適合を解消するための様々な正則化手法がある • weight decay や learning rate scheduler • Pytorchで簡単に使える ▪ 今日は最近の研究から、実用性が高い新しい正則化手法を 紹介する • 特に実装が楽 • まだあまり知られていない 2
紹介する論文 ▪ Do We Need Zero Training Loss After Achieving
Zero Training Error?, Ishida et al., ICML 2020 • Floodingという新しい正則化手法を導入 ▪ iFlood: A Stable and Effective Regularizer, Xie et al., ICLR 2022 • Floodingの計算式を少しだけ改良 3
Ishida et al., ICML 2020 ▪ モチベーション • 学習データでの損失を0まで学習を行ったほうが良いと言われる •
しかし、これは本当に必要なのか • 正則化手法は、学習データでの損失を過度に最小化しないための間 接的な手法と見なせる ▪ 直接学習損失の最小化を制限する手法:Flooding • 実装も簡単 • 学習損失は0じゃなくても、学習精度が100%の可能性もある 4
Ishida et al., ICML 2020 ▪ 提案法は以下の性質をすべて満たす初めての正則化手法 • 学習損失を直接制限する •
特定の問題ドメインに依存しない • 特定のタスクに依存しない • 特定のモデルに依存しない ▪ 提案法の仮設もシンプルで、「0の学習損失が有害」のみ ▪ 検証損失の二重降下に関する初めて研究 5
Ishida et al., ICML 2020 ▪ 人工データで有意な性能向上 6
Ishida et al., ICML 2020 ▪ 実データでも有意な性能向上 ▪ その他、Floodingによる勾配値の変化や解の平坦性なども調 査
7
Xie et al., ICLR 2022 ▪ Floodingにデータインスタンスの勾配が乖離する問題 • バッチで平均を取るので、同じバッチにある他のデータインスタンスの 損失に依存する
▪ 提案手法:絶対値をバッチで取るではなく、各データインスタン スレベルで取るので、indivisual Flood (iFlood)と呼ぶ ▪ 各手法のインスタンスの損失のヒストグラム 8
Xie et al., ICLR 2022 ▪ 確かに性能向上につながる ▪ その他も、勾配のノルムやノイズ耐性などを検証 9
まとめ ▪ 実用性高い正則化手法のFloodingとその改良版のiFlood ▪ 実装がシンプルで試しやすい 10