Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
深層学習は奔流に身をまかせ / Get Drowned in the Flood for De...
Search
Henry Cui
February 17, 2023
Technology
0
260
深層学習は奔流に身をまかせ / Get Drowned in the Flood for Deep Learning
Henry Cui
February 17, 2023
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
1
210
Direct Preference Optimization
zchenry
0
380
Diffusion Model with Perceptual Loss
zchenry
0
410
レンズの下のLLM / LLM under the Lens
zchenry
0
190
Go with the Prompt Flow
zchenry
0
170
Mojo Dojo
zchenry
0
220
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
580
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
250
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
130
Other Decks in Technology
See All in Technology
7月のガバクラ利用料が高かったので調べてみた
techniczna
3
810
AWSで推進するデータマネジメント
kawanago
0
800
kubellが考える戦略と実行を繋ぐ活用ファーストのデータ分析基盤
kubell_hr
0
120
実践アプリケーション設計 ③ドメイン駆動設計
recruitengineers
PRO
13
4k
Automating Web Accessibility Testing with AI Agents
maminami373
0
290
Nstockの一人目エンジニアが 3年間かけて向き合ってきた セキュリティのこととこれから〜あれから半年〜
yo41sawada
0
170
DDD集約とサービスコンテキスト境界との関係性
pandayumi
2
210
生成AI時代に必要な価値ある意思決定を育てる「開発プロセス定義」を用いた中期戦略
kakehashi
PRO
1
240
RSCの時代にReactとフレームワークの境界を探る
uhyo
8
1.2k
実践データベース設計 ①データベース設計概論
recruitengineers
PRO
4
2k
ヘブンバーンズレッドにおける、世界観を活かしたミニゲーム企画の作り方
gree_tech
PRO
0
430
AWS環境のリソース調査を Claude Code で効率化 / aws investigate with cc devio2025
masahirokawahara
2
1k
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
How to Ace a Technical Interview
jacobian
279
23k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
570
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6.1k
Typedesign – Prime Four
hannesfritz
42
2.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
GitHub's CSS Performance
jonrohan
1032
460k
Transcript
深層学習は奔流に身をまかせ 機械学習の社会実装勉強会第20回 Henry 2023/2/18
モチベーション ▪ ペインポイント • 深層モデルの学習で望ましい効果を素早く得るのは難しい • 実データのラベルにノイズが多い • その問題点の一つに、過適合が挙げられる ▪
過適合を解消するための様々な正則化手法がある • weight decay や learning rate scheduler • Pytorchで簡単に使える ▪ 今日は最近の研究から、実用性が高い新しい正則化手法を 紹介する • 特に実装が楽 • まだあまり知られていない 2
紹介する論文 ▪ Do We Need Zero Training Loss After Achieving
Zero Training Error?, Ishida et al., ICML 2020 • Floodingという新しい正則化手法を導入 ▪ iFlood: A Stable and Effective Regularizer, Xie et al., ICLR 2022 • Floodingの計算式を少しだけ改良 3
Ishida et al., ICML 2020 ▪ モチベーション • 学習データでの損失を0まで学習を行ったほうが良いと言われる •
しかし、これは本当に必要なのか • 正則化手法は、学習データでの損失を過度に最小化しないための間 接的な手法と見なせる ▪ 直接学習損失の最小化を制限する手法:Flooding • 実装も簡単 • 学習損失は0じゃなくても、学習精度が100%の可能性もある 4
Ishida et al., ICML 2020 ▪ 提案法は以下の性質をすべて満たす初めての正則化手法 • 学習損失を直接制限する •
特定の問題ドメインに依存しない • 特定のタスクに依存しない • 特定のモデルに依存しない ▪ 提案法の仮設もシンプルで、「0の学習損失が有害」のみ ▪ 検証損失の二重降下に関する初めて研究 5
Ishida et al., ICML 2020 ▪ 人工データで有意な性能向上 6
Ishida et al., ICML 2020 ▪ 実データでも有意な性能向上 ▪ その他、Floodingによる勾配値の変化や解の平坦性なども調 査
7
Xie et al., ICLR 2022 ▪ Floodingにデータインスタンスの勾配が乖離する問題 • バッチで平均を取るので、同じバッチにある他のデータインスタンスの 損失に依存する
▪ 提案手法:絶対値をバッチで取るではなく、各データインスタン スレベルで取るので、indivisual Flood (iFlood)と呼ぶ ▪ 各手法のインスタンスの損失のヒストグラム 8
Xie et al., ICLR 2022 ▪ 確かに性能向上につながる ▪ その他も、勾配のノルムやノイズ耐性などを検証 9
まとめ ▪ 実用性高い正則化手法のFloodingとその改良版のiFlood ▪ 実装がシンプルで試しやすい 10