Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
深層学習は奔流に身をまかせ / Get Drowned in the Flood for De...
Search
Henry Cui
February 17, 2023
Technology
0
270
深層学習は奔流に身をまかせ / Get Drowned in the Flood for Deep Learning
Henry Cui
February 17, 2023
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
1
220
Direct Preference Optimization
zchenry
0
410
Diffusion Model with Perceptual Loss
zchenry
0
450
レンズの下のLLM / LLM under the Lens
zchenry
0
190
Go with the Prompt Flow
zchenry
0
180
Mojo Dojo
zchenry
0
230
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
620
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
280
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
150
Other Decks in Technology
See All in Technology
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
130
Reinforcement Fine-tuning 基礎〜実践まで
ch6noota
0
180
文字列の並び順 / Unicode Collation
tmtms
3
580
Challenging Hardware Contests with Zephyr and Lessons Learned
iotengineer22
0
210
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
320
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
480
手動から自動へ、そしてその先へ
moritamasami
0
300
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
1.4k
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
770
ログ管理の新たな可能性?CloudWatchの新機能をご紹介
ikumi_ono
1
740
re:Invent 2025 ふりかえり 生成AI版
takaakikakei
1
210
Debugging Edge AI on Zephyr and Lessons Learned
iotengineer22
0
200
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
246
13k
Building Adaptive Systems
keathley
44
2.9k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Designing for humans not robots
tammielis
254
26k
BBQ
matthewcrist
89
9.9k
Making Projects Easy
brettharned
120
6.5k
For a Future-Friendly Web
brad_frost
180
10k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Statistics for Hackers
jakevdp
799
230k
How STYLIGHT went responsive
nonsquared
100
6k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Transcript
深層学習は奔流に身をまかせ 機械学習の社会実装勉強会第20回 Henry 2023/2/18
モチベーション ▪ ペインポイント • 深層モデルの学習で望ましい効果を素早く得るのは難しい • 実データのラベルにノイズが多い • その問題点の一つに、過適合が挙げられる ▪
過適合を解消するための様々な正則化手法がある • weight decay や learning rate scheduler • Pytorchで簡単に使える ▪ 今日は最近の研究から、実用性が高い新しい正則化手法を 紹介する • 特に実装が楽 • まだあまり知られていない 2
紹介する論文 ▪ Do We Need Zero Training Loss After Achieving
Zero Training Error?, Ishida et al., ICML 2020 • Floodingという新しい正則化手法を導入 ▪ iFlood: A Stable and Effective Regularizer, Xie et al., ICLR 2022 • Floodingの計算式を少しだけ改良 3
Ishida et al., ICML 2020 ▪ モチベーション • 学習データでの損失を0まで学習を行ったほうが良いと言われる •
しかし、これは本当に必要なのか • 正則化手法は、学習データでの損失を過度に最小化しないための間 接的な手法と見なせる ▪ 直接学習損失の最小化を制限する手法:Flooding • 実装も簡単 • 学習損失は0じゃなくても、学習精度が100%の可能性もある 4
Ishida et al., ICML 2020 ▪ 提案法は以下の性質をすべて満たす初めての正則化手法 • 学習損失を直接制限する •
特定の問題ドメインに依存しない • 特定のタスクに依存しない • 特定のモデルに依存しない ▪ 提案法の仮設もシンプルで、「0の学習損失が有害」のみ ▪ 検証損失の二重降下に関する初めて研究 5
Ishida et al., ICML 2020 ▪ 人工データで有意な性能向上 6
Ishida et al., ICML 2020 ▪ 実データでも有意な性能向上 ▪ その他、Floodingによる勾配値の変化や解の平坦性なども調 査
7
Xie et al., ICLR 2022 ▪ Floodingにデータインスタンスの勾配が乖離する問題 • バッチで平均を取るので、同じバッチにある他のデータインスタンスの 損失に依存する
▪ 提案手法:絶対値をバッチで取るではなく、各データインスタン スレベルで取るので、indivisual Flood (iFlood)と呼ぶ ▪ 各手法のインスタンスの損失のヒストグラム 8
Xie et al., ICLR 2022 ▪ 確かに性能向上につながる ▪ その他も、勾配のノルムやノイズ耐性などを検証 9
まとめ ▪ 実用性高い正則化手法のFloodingとその改良版のiFlood ▪ 実装がシンプルで試しやすい 10