Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
深層学習は奔流に身をまかせ / Get Drowned in the Flood for De...
Search
Henry Cui
February 17, 2023
Technology
0
230
深層学習は奔流に身をまかせ / Get Drowned in the Flood for Deep Learning
Henry Cui
February 17, 2023
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
0
130
Direct Preference Optimization
zchenry
0
330
Diffusion Model with Perceptual Loss
zchenry
0
300
レンズの下のLLM / LLM under the Lens
zchenry
0
170
Go with the Prompt Flow
zchenry
0
140
Mojo Dojo
zchenry
0
190
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
480
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
200
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
97
Other Decks in Technology
See All in Technology
フォーイット_エンジニア向け会社紹介資料_Forit_Company_Profile.pdf
forit_tech
1
1.7k
【Forkwell】「正しく」失敗できるチームを作る──現場のリーダーのための恐怖と不安を乗り越える技術 - FL#83 / A team that can fail correctly by forkwell
i35_267
2
120
Snowflake ML モデルを dbt データパイプラインに組み込む
estie
0
120
【内製開発Summit 2025】イオンスマートテクノロジーの内製化組織の作り方/In-house-development-summit-AST
aeonpeople
2
1.2k
入門 PEAK Threat Hunting @SECCON
odorusatoshi
0
190
Qiita Organizationを導入したら、アウトプッターが爆増して会社がちょっと有名になった件
minorun365
PRO
1
350
スクラムというコンフォートゾーンから抜け出そう!プロジェクト全体に目を向けるインセプションデッキ / Inception Deck for seeing the whole project
takaking22
3
180
プロダクト開発者目線での Entra ID 活用
sansantech
PRO
0
160
x86-64 Assembly Essentials
latte72
4
580
どうすると生き残れないのか/how-not-to-survive
hanhan1978
2
520
MIMEと文字コードの闇
hirachan
2
1.5k
RayでPHPのデバッグをちょっと快適にする
muno92
PRO
0
200
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
A better future with KSS
kneath
238
17k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Designing for Performance
lara
605
68k
Typedesign – Prime Four
hannesfritz
41
2.5k
The Cost Of JavaScript in 2023
addyosmani
47
7.5k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Raft: Consensus for Rubyists
vanstee
137
6.8k
How GitHub (no longer) Works
holman
314
140k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
深層学習は奔流に身をまかせ 機械学習の社会実装勉強会第20回 Henry 2023/2/18
モチベーション ▪ ペインポイント • 深層モデルの学習で望ましい効果を素早く得るのは難しい • 実データのラベルにノイズが多い • その問題点の一つに、過適合が挙げられる ▪
過適合を解消するための様々な正則化手法がある • weight decay や learning rate scheduler • Pytorchで簡単に使える ▪ 今日は最近の研究から、実用性が高い新しい正則化手法を 紹介する • 特に実装が楽 • まだあまり知られていない 2
紹介する論文 ▪ Do We Need Zero Training Loss After Achieving
Zero Training Error?, Ishida et al., ICML 2020 • Floodingという新しい正則化手法を導入 ▪ iFlood: A Stable and Effective Regularizer, Xie et al., ICLR 2022 • Floodingの計算式を少しだけ改良 3
Ishida et al., ICML 2020 ▪ モチベーション • 学習データでの損失を0まで学習を行ったほうが良いと言われる •
しかし、これは本当に必要なのか • 正則化手法は、学習データでの損失を過度に最小化しないための間 接的な手法と見なせる ▪ 直接学習損失の最小化を制限する手法:Flooding • 実装も簡単 • 学習損失は0じゃなくても、学習精度が100%の可能性もある 4
Ishida et al., ICML 2020 ▪ 提案法は以下の性質をすべて満たす初めての正則化手法 • 学習損失を直接制限する •
特定の問題ドメインに依存しない • 特定のタスクに依存しない • 特定のモデルに依存しない ▪ 提案法の仮設もシンプルで、「0の学習損失が有害」のみ ▪ 検証損失の二重降下に関する初めて研究 5
Ishida et al., ICML 2020 ▪ 人工データで有意な性能向上 6
Ishida et al., ICML 2020 ▪ 実データでも有意な性能向上 ▪ その他、Floodingによる勾配値の変化や解の平坦性なども調 査
7
Xie et al., ICLR 2022 ▪ Floodingにデータインスタンスの勾配が乖離する問題 • バッチで平均を取るので、同じバッチにある他のデータインスタンスの 損失に依存する
▪ 提案手法:絶対値をバッチで取るではなく、各データインスタン スレベルで取るので、indivisual Flood (iFlood)と呼ぶ ▪ 各手法のインスタンスの損失のヒストグラム 8
Xie et al., ICLR 2022 ▪ 確かに性能向上につながる ▪ その他も、勾配のノルムやノイズ耐性などを検証 9
まとめ ▪ 実用性高い正則化手法のFloodingとその改良版のiFlood ▪ 実装がシンプルで試しやすい 10