Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LLMを活用した推薦システムの改善: 課題と初期導入のアプローチ
Search
Higuchi kokoro
April 25, 2023
Programming
4
4.3k
LLMを活用した推薦システムの改善: 課題と初期導入のアプローチ
LLM(GPT, PaLM等) with MLOps LT大会!!!
登壇資料
https://mlops.connpass.com/event/279156/
Higuchi kokoro
April 25, 2023
Tweet
Share
More Decks by Higuchi kokoro
See All by Higuchi kokoro
PMとしてLLMと上手くプロダクトを作るための抽象度レイヤーの設計
zerebom
2
770
PMになって痛感した未知の未知とその対策
zerebom
1
390
Pythonによるネットワーク分析の基礎とコミュニティサクセスへの応用
zerebom
4
1.3k
Polarsの成長: v0.14からv1.0までの変遷と今後の展望
zerebom
1
960
ダッシュボードを使ってもらうには、 現場へのヒアリングが重要だと 改めて気づいた話
zerebom
4
2k
非同期処理でLLMにもっと働いてもらおう
zerebom
2
2k
使い回しやすい 2-stage recommender systemの デザインパターンを考えて実装した話
zerebom
3
2k
WantedlyでFeature Storeを導入する際に考えたこと
zerebom
4
5.8k
論文紹介: Cross-Market Product Recommendation
zerebom
1
230
Other Decks in Programming
See All in Programming
なぜ「共通化」を考え、失敗を繰り返すのか
rinchoku
1
510
#kanrk08 / 公開版 PicoRubyとマイコンでの自作トレーニング計測装置を用いたワークアウトの理想と現実
bash0c7
1
440
関数型まつりレポート for JuliaTokai #22
antimon2
0
150
deno-redisの紹介とJSRパッケージの運用について (toranoana.deno #21)
uki00a
0
150
git worktree × Claude Code × MCP ~生成AI時代の並列開発フロー~
hisuzuya
1
480
GoのGenericsによるslice操作との付き合い方
syumai
3
690
Cline指示通りに動かない? AI小説エージェントで学ぶ指示書の書き方と自動アップデートの仕組み
kamomeashizawa
1
580
『自分のデータだけ見せたい!』を叶える──Laravel × Casbin で複雑権限をスッキリ解きほぐす 25 分
akitotsukahara
1
550
アンドパッドの Go 勉強会「 gopher 会」とその内容の紹介
andpad
0
260
CursorはMCPを使った方が良いぞ
taigakono
1
180
なんとなくわかった気になるブロックテーマ入門/contents.nagoya 2025 6.28
chiilog
1
210
GitHub Copilot and GitHub Codespaces Hands-on
ymd65536
1
120
Featured
See All Featured
Done Done
chrislema
184
16k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Music & Morning Musume
bryan
46
6.6k
Raft: Consensus for Rubyists
vanstee
140
7k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
It's Worth the Effort
3n
185
28k
Faster Mobile Websites
deanohume
307
31k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Transcript
© 2023 Wantedly, Inc. LLMを活用した推薦システムの改善: 課題と初期導入のアプローチ LLM(GPT, PaLM等) with MLOps
LT大会!!! Apr. 25 2023 - Kokoro Higuchi(@zerebom_3)
© 2023 Wantedly, Inc. 自己紹介 • 樋口 心(Higuchi Kokoro) •
Data Scientist @Wantedly ◦ 推薦システムの設計・実装・評価 • 趣味: 🎾🏂🍻🎮 + LLMいじり • Twitter: @zerebom_3 • GitHub: @zerebom
© 2023 Wantedly, Inc. 今日話すこと • 推薦システムとは? • LLMを活用した推薦システムの改善例 •
導入に対する課題 • 初期導入のアプローチ
© 2023 Wantedly, Inc. 推薦システムとは? 複数の候補から価値のあるものを 選び出し、意思決定を支援する システム ※ ※引用元:
推薦システム実践入門 ―仕事で使える導入ガイド https://www.oreilly.co.jp/books/9784873119663/
© 2023 Wantedly, Inc. 推薦システムとは? 10数万の募集から、 複数の候補から価値の あるものを選び出す
© 2023 Wantedly, Inc. 推薦システムとは? 意思決定を支援できるように 情報を適切に説明・提示する
© 2023 Wantedly, Inc. LLMと推薦システム 価値あるものを選び出すこと, 意思決定の支援どちらでも、 LLMの活用でこれまでにない価値創出ができるのでは? ex •
対話を通じたインタラクティブな推薦結果の調節
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例 • より具体的にイメージするために、仕事探しの 推薦システムにおいてLLM活用アイディアを考えてみた •
紹介する例は個人の構想ベースのものであり、組織を代表するも のではないです。 また、導入・検証には至ってはないです🙏
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例: 対話を通じた推薦 価値あるアイテムの選出 意思決定支援
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例: 対話を通じた推薦 説明性の付与 自然言語を 使った推薦結果の
調整 推薦後の アクション 実行 価値あるアイテムの選出 意思決定支援
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例1: 推薦に対する説明性の付与 推薦システムに対する理解と信頼性を向上させるために、根拠を明確にする
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例2: 自然言語を使った推薦結果の調整 ユーザーのニーズに合わせた情報抽出・条件変更が動的に可能にする
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例3: その他 • 情報が不十分な(コールドスタート)ユーザのデータ拡張 ◦
プロフィールが十分に埋まってないユーザのスキル推定 • 推薦後のアクションを同一インタフェース上で実現 ◦ 応募など心理的ハードルが高い意思決定を支援
© 2023 Wantedly, Inc. 推薦システムにおけるLLMの活用の課題 • 柔軟な推薦には多くのアイテムとの関連度計算が必要 ◦ ただしLLMへの入力データが多いとAPI費用・応答時間が上昇 •
アイテムに対する不適切な説明は厳禁 ◦ この仕事はおすすめしないです、などと LLMが言ってしまうと、 プラットフォームとしての信頼性がなくなる
© 2023 Wantedly, Inc. リスクや費用を回避しつつ柔軟な推薦を行うための初期アプローチ • 予め、他の仕組みでLLMへの入力情報を選定しておく ◦ ex) 3-stageの推薦システム(2-stage
+ LLM) • LLMに解かせるタスクや入出力を限定する ◦ ×: 回答: {LLM_answer} ◦ ◎: あなたにおすすめの募集は ${LLM_suggested_item}で理由は ${LLM_suggested_reason}です。
© 2023 Wantedly, Inc. 初期導入のアプローチ例: 自然言語を使った推薦リストのフィルタリング • ユーザの入力をデータ操作 クエリに変換するだけのタスクを解 かせる
• ユーザの依頼文だけが入力になる ので、高速に応答可能 • LLMの出力を直接使わないので、 リスク軽減
© 2023 Wantedly, Inc. まとめ • LLM × 推薦システムはこれまでにない価値創出ができそう ◦
説明性の付与 ◦ 自然言語での推薦結果の調節 • ただし実運用には様々な壁がある ◦ 柔軟な推薦のために多数のデータを渡したいが困難 ◦ LLMの発言内容の精査 • LLMに与えるタスクの選定や既存システムとの繋ぎこみ方が肝要 • 新しい技術が出続けるので、適宜最適な組み合わせを選ぶ ◦ Agent, Cache, Indexing, Finetune, etc…