Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LLMを活用した推薦システムの改善: 課題と初期導入のアプローチ
Search
Higuchi kokoro
April 25, 2023
Programming
4
4.2k
LLMを活用した推薦システムの改善: 課題と初期導入のアプローチ
LLM(GPT, PaLM等) with MLOps LT大会!!!
登壇資料
https://mlops.connpass.com/event/279156/
Higuchi kokoro
April 25, 2023
Tweet
Share
More Decks by Higuchi kokoro
See All by Higuchi kokoro
Pythonによるネットワーク分析の基礎とコミュニティサクセスへの応用
zerebom
4
1.1k
Polarsの成長: v0.14からv1.0までの変遷と今後の展望
zerebom
1
830
ダッシュボードを使ってもらうには、 現場へのヒアリングが重要だと 改めて気づいた話
zerebom
4
1.9k
非同期処理でLLMにもっと働いてもらおう
zerebom
2
1.7k
使い回しやすい 2-stage recommender systemの デザインパターンを考えて実装した話
zerebom
3
1.8k
WantedlyでFeature Storeを導入する際に考えたこと
zerebom
4
5.4k
論文紹介: Cross-Market Product Recommendation
zerebom
1
180
Pythonでのパッケージング: エコシステムの理解と現場での活用 PyCon APAC2023
zerebom
2
2.2k
ChatGPTとの会話のデータ分析: 開発対話を最適化するための指針と特性
zerebom
1
2.3k
Other Decks in Programming
See All in Programming
PHPUnitしか使ってこなかった 一般PHPerがPestに乗り換えた実録
mashirou1234
0
420
ErdMap: Thinking about a map for Rails applications
makicamel
1
610
shadcn/uiを使ってReactでの開発を加速させよう!
lef237
0
300
知られざるDMMデータエンジニアの生態 〜かつてツチノコと呼ばれし者〜
takaha4k
1
420
PSR-15 はあなたのための ものではない? - phpcon2024
myamagishi
0
400
令和7年版 あなたが使ってよいフロントエンド機能とは
mugi_uno
10
5.2k
Lookerは可視化だけじゃない。UIコンポーネントもあるんだ!
ymd65536
1
130
[JAWS-UG横浜 #80] うわっ…今年のServerless アップデート、少なすぎ…?
maroon1st
0
100
BEエンジニアがFEの業務をできるようになるまでにやったこと
yoshida_ryushin
0
200
歴史と現在から考えるスケーラブルなソフトウェア開発のプラクティス
i10416
0
300
Amazon Nova Reelの可能性
hideg
0
200
良いユニットテストを書こう
mototakatsu
11
3.6k
Featured
See All Featured
Speed Design
sergeychernyshev
25
740
The Art of Programming - Codeland 2020
erikaheidi
53
13k
The Language of Interfaces
destraynor
155
24k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Gamification - CAS2011
davidbonilla
80
5.1k
Fireside Chat
paigeccino
34
3.1k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Become a Pro
speakerdeck
PRO
26
5.1k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
570
Transcript
© 2023 Wantedly, Inc. LLMを活用した推薦システムの改善: 課題と初期導入のアプローチ LLM(GPT, PaLM等) with MLOps
LT大会!!! Apr. 25 2023 - Kokoro Higuchi(@zerebom_3)
© 2023 Wantedly, Inc. 自己紹介 • 樋口 心(Higuchi Kokoro) •
Data Scientist @Wantedly ◦ 推薦システムの設計・実装・評価 • 趣味: 🎾🏂🍻🎮 + LLMいじり • Twitter: @zerebom_3 • GitHub: @zerebom
© 2023 Wantedly, Inc. 今日話すこと • 推薦システムとは? • LLMを活用した推薦システムの改善例 •
導入に対する課題 • 初期導入のアプローチ
© 2023 Wantedly, Inc. 推薦システムとは? 複数の候補から価値のあるものを 選び出し、意思決定を支援する システム ※ ※引用元:
推薦システム実践入門 ―仕事で使える導入ガイド https://www.oreilly.co.jp/books/9784873119663/
© 2023 Wantedly, Inc. 推薦システムとは? 10数万の募集から、 複数の候補から価値の あるものを選び出す
© 2023 Wantedly, Inc. 推薦システムとは? 意思決定を支援できるように 情報を適切に説明・提示する
© 2023 Wantedly, Inc. LLMと推薦システム 価値あるものを選び出すこと, 意思決定の支援どちらでも、 LLMの活用でこれまでにない価値創出ができるのでは? ex •
対話を通じたインタラクティブな推薦結果の調節
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例 • より具体的にイメージするために、仕事探しの 推薦システムにおいてLLM活用アイディアを考えてみた •
紹介する例は個人の構想ベースのものであり、組織を代表するも のではないです。 また、導入・検証には至ってはないです🙏
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例: 対話を通じた推薦 価値あるアイテムの選出 意思決定支援
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例: 対話を通じた推薦 説明性の付与 自然言語を 使った推薦結果の
調整 推薦後の アクション 実行 価値あるアイテムの選出 意思決定支援
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例1: 推薦に対する説明性の付与 推薦システムに対する理解と信頼性を向上させるために、根拠を明確にする
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例2: 自然言語を使った推薦結果の調整 ユーザーのニーズに合わせた情報抽出・条件変更が動的に可能にする
© 2023 Wantedly, Inc. 仕事探しの推薦システムにおける LLMの活用例3: その他 • 情報が不十分な(コールドスタート)ユーザのデータ拡張 ◦
プロフィールが十分に埋まってないユーザのスキル推定 • 推薦後のアクションを同一インタフェース上で実現 ◦ 応募など心理的ハードルが高い意思決定を支援
© 2023 Wantedly, Inc. 推薦システムにおけるLLMの活用の課題 • 柔軟な推薦には多くのアイテムとの関連度計算が必要 ◦ ただしLLMへの入力データが多いとAPI費用・応答時間が上昇 •
アイテムに対する不適切な説明は厳禁 ◦ この仕事はおすすめしないです、などと LLMが言ってしまうと、 プラットフォームとしての信頼性がなくなる
© 2023 Wantedly, Inc. リスクや費用を回避しつつ柔軟な推薦を行うための初期アプローチ • 予め、他の仕組みでLLMへの入力情報を選定しておく ◦ ex) 3-stageの推薦システム(2-stage
+ LLM) • LLMに解かせるタスクや入出力を限定する ◦ ×: 回答: {LLM_answer} ◦ ◎: あなたにおすすめの募集は ${LLM_suggested_item}で理由は ${LLM_suggested_reason}です。
© 2023 Wantedly, Inc. 初期導入のアプローチ例: 自然言語を使った推薦リストのフィルタリング • ユーザの入力をデータ操作 クエリに変換するだけのタスクを解 かせる
• ユーザの依頼文だけが入力になる ので、高速に応答可能 • LLMの出力を直接使わないので、 リスク軽減
© 2023 Wantedly, Inc. まとめ • LLM × 推薦システムはこれまでにない価値創出ができそう ◦
説明性の付与 ◦ 自然言語での推薦結果の調節 • ただし実運用には様々な壁がある ◦ 柔軟な推薦のために多数のデータを渡したいが困難 ◦ LLMの発言内容の精査 • LLMに与えるタスクの選定や既存システムとの繋ぎこみ方が肝要 • 新しい技術が出続けるので、適宜最適な組み合わせを選ぶ ◦ Agent, Cache, Indexing, Finetune, etc…