Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Online Learning to Rank for Sequential Music Re...
Search
zr_4
October 05, 2019
Research
0
900
Online Learning to Rank for Sequential Music Recommendation
zr_4
October 05, 2019
Tweet
Share
More Decks by zr_4
See All by zr_4
ニュース記事の品質が広告消費行動に与える影響の調査
zr_4
0
1k
パーソナライゼーションのためのマルチリービング
zr_4
3
1.1k
consumption.pdf
zr_4
0
330
Other Decks in Research
See All in Research
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
300
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.1k
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
110
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
12
6.5k
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
590
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.6k
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
340
POI: Proof of Identity
katsyoshi
0
120
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
380
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.1k
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
910
Featured
See All Featured
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
870
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
120
How Software Deployment tools have changed in the past 20 years
geshan
0
30k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.4k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
400
Transcript
0OMJOF-FBSOJOHUP3BOLGPS 4FRVFOUJBM.VTJD3FDPNNFOEBUJPO #-1FSFJSB "6FEB (1FOIB 3-54BOUPT /;JWJBOJ 3FD4ZTจಡΈձࢿྉ ൧௩ᔨೋ![S@
ஶऀհ w ॴଐ w 'FEFSBM6OJWFSTJUZPG.JOBT(FSBJT w ஶऀ w #SVOP-1FSFJSB w
"MCFSUP6FEB w (VTUBWP1FOIB w 3PESZHP-54BOUPT w /JWJP;JWJBOJ
എܠ w ԻָετϦʔϛϯάαʔϏεͷོ w ਓྗϓϨΠϦετͷݶք w Ϣʔβʔͷझଊ͍͑ͯͳ͍ w ͯ͢ͷۂΛΧόʔ͢Δͷແཧ w
աڈͷϩά zݱࡏͷηογϣϯz͔Βֶश͍ͨ͠ w ؾɺΞΫςΟϏςΟʹΑͬͯฉ͖͍ͨۂมΘΔ
ߩݙ w ϢʔβʔϑΟʔυόοΫΛ࿈ଓతʹֶश͢ΔΦϯϥΠϯϥϯ Ϋֶशख๏$PVOUFSGBDUVBM%VFMJOH#BOEJUT $%# ΛఏҊ w *NQMJDJUGFFECBDL QMBZPSBDUJPO ͷΈΛ͏
w ࣍ݩಛϕΫτϧΛείΞϦϯάʹ͏ w Ϟσϧ୳ࡧ࣌ʹҼՌਪ͢Δ w ࠷৽ͷΦϯϥΠϯֶशख๏ΑΓֶश͕ૣ͘ɺߴਫ਼Λୡ
ؔ࿈ݚڀ w "VUPNBUJD1MBZMJTU(FOFSBUJPO w 4UBUJD w .BSLPWSBOEPNpFMEBQQSPBDI 4*(.. 3BHOPFUBM
w %ZOBNJD w JNQMJDJUGFFECBDLΛͬͨώϡʔϦεςΟΫε *4.*3 1BNQBMLFUBM w BVEJPCBTFESFQSFTFOUBUJPOʹجͮ͘ۂΫϥελۭؒͷڧԽ ֶश 3FD4ZT ,JOHBOE*NCSBTBJUF
ؔ࿈ݚڀ w $POUFYUVBMCBOEJUT w /FXTDPOUFYUVBMCBOEJU 84%. -JFUBM w ۂΛBSNʹ͢ΔͱϢʔβʔମݧతʹΑ͘ͳ͍͔
w 0OMJOFMFBSOJOHUPSBOL w ΞΠςϜۭؒͷ࣍ݩಛྔΛBSNʹ͢Δ w ۂҰͭΛධՁ͢ΔͷʹϥϯΩϯάΛධՁ͢ΔJOUFSMFBWJOH ෆద
ઃఆ શۂσʔλ ਪનީิۂ
$%#"MHPSJUIN
$%#"MHPSJUIN VରϢʔβ TϢʔβ͕બΜͩॳظۂ NΞʔϜͷ Tͷϙδγϣϯ ॳظԽ
$%#"MHPSJUIN VରϢʔβ TϢʔβ͕બΜͩॳظۂ NΞʔϜͷ Tͷϙδγϣϯ ॳظԽ ϕΫτϧ୳ࡧ
$%#"MHPSJUIN
$%#"MHPSJUIN VରϢʔβ TϢʔβ͕બΜͩॳظۂ NΞʔϜͷ Tͷϙδγϣϯ ॳظԽ ϕΫτϧ୳ࡧ ධՁ
࣮ݧɿௐ߲ࠪ $%#ͲΕ΄Ͳֶ͘श͢Δ͔ $%#ऩଋ࣌ʹͲΕ΄ͲͷޮՌ͕͋Δ͔ EVFMͲͷΑ͏ʹӨڹ͢Δ͔
࣮ݧɿσʔληοτ w -BTUGN,EBUBTFU w ظؒɿ w ΧϥϜɿVTFS*% BSUJTU*% TPOH*% UJUMF
w 4QPUJGZ .VTJD#SBJO[ͷσʔλͱ݁߹ w VTFST TPOHT FWFOUT
࣮ݧɿධՁ
࣮ݧ݁Ռֶश ˠ-JO6$#ʹൺɺֶ͘शͰ͖͍ͯΔ
࣮ݧ݁ՌֶशޮՌ ˠ-JO6$#ʹൺɺޮՌతʹֶशͰ͖͍ͯΔ
࣮ݧ݁ՌEVFMͷӨڹ ˠNҎ߱Ͱ-JO6$#ʹൺɺใु͕ߴ͔ͬͨ
·ͱΊͱࠓޙͷ՝ w Իָͷਪનʹର͢ΔΦϯϥΠϯֶशख๏$%#ΛఏҊ w ύʔιφϥΠζ͔ͭগͳ͍GFFECBDLͷঢ়گطଘݚڀʹͳ͔ͬͨ w $POUFYUVBMCBOEJUͱͷൺֱ࣮ݧΛߦͬͨ w গͳ͍ϢʔβʔϑΟʔυόοΫͰޮՌతͳֶश w
ࠓޙͷ՝ w χϡʔεਪનͷద༻ w ࣮ੈքͷద༻
ॴײ w 4FRVFOUJBM3FDPNNFOEBUJPOͷΦϑϥΠϯධՁͷΓ ͔͕ͨΓ͔ͨͬͨͷͰࢀߟʹͳͬͨ w Իָਪનઃఆ͕໘ന͍ w ઃఆ͔Β͢Δͱ࣮ݧͷϕʔεϥΠϯଥ͔͠Εͳ ͍͕ɺ$'ͳͲ౷తͳख๏ͱͷਫ਼ͷҧ͍͕ؾʹͳΔ