Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Online Learning to Rank for Sequential Music Re...
Search
zr_4
October 05, 2019
Research
0
910
Online Learning to Rank for Sequential Music Recommendation
zr_4
October 05, 2019
Tweet
Share
More Decks by zr_4
See All by zr_4
ニュース記事の品質が広告消費行動に与える影響の調査
zr_4
0
1k
パーソナライゼーションのためのマルチリービング
zr_4
3
1.1k
consumption.pdf
zr_4
0
340
Other Decks in Research
See All in Research
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
760
Ankylosing Spondylitis
ankh2054
0
110
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
140
20年前に50代だった人たちの今
hysmrk
0
140
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
280
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
380
財務諸表監査のための逐次検定
masakat0
1
250
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.6k
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
Featured
See All Featured
How to Ace a Technical Interview
jacobian
281
24k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
52
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
So, you think you're a good person
axbom
PRO
2
1.9k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
650
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
150
Writing Fast Ruby
sferik
630
62k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
54
Documentation Writing (for coders)
carmenintech
77
5.3k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
79
Transcript
0OMJOF-FBSOJOHUP3BOLGPS 4FRVFOUJBM.VTJD3FDPNNFOEBUJPO #-1FSFJSB "6FEB (1FOIB 3-54BOUPT /;JWJBOJ 3FD4ZTจಡΈձࢿྉ ൧௩ᔨೋ![S@
ஶऀհ w ॴଐ w 'FEFSBM6OJWFSTJUZPG.JOBT(FSBJT w ஶऀ w #SVOP-1FSFJSB w
"MCFSUP6FEB w (VTUBWP1FOIB w 3PESZHP-54BOUPT w /JWJP;JWJBOJ
എܠ w ԻָετϦʔϛϯάαʔϏεͷོ w ਓྗϓϨΠϦετͷݶք w Ϣʔβʔͷझଊ͍͑ͯͳ͍ w ͯ͢ͷۂΛΧόʔ͢Δͷແཧ w
աڈͷϩά zݱࡏͷηογϣϯz͔Βֶश͍ͨ͠ w ؾɺΞΫςΟϏςΟʹΑͬͯฉ͖͍ͨۂมΘΔ
ߩݙ w ϢʔβʔϑΟʔυόοΫΛ࿈ଓతʹֶश͢ΔΦϯϥΠϯϥϯ Ϋֶशख๏$PVOUFSGBDUVBM%VFMJOH#BOEJUT $%# ΛఏҊ w *NQMJDJUGFFECBDL QMBZPSBDUJPO ͷΈΛ͏
w ࣍ݩಛϕΫτϧΛείΞϦϯάʹ͏ w Ϟσϧ୳ࡧ࣌ʹҼՌਪ͢Δ w ࠷৽ͷΦϯϥΠϯֶशख๏ΑΓֶश͕ૣ͘ɺߴਫ਼Λୡ
ؔ࿈ݚڀ w "VUPNBUJD1MBZMJTU(FOFSBUJPO w 4UBUJD w .BSLPWSBOEPNpFMEBQQSPBDI 4*(.. 3BHOPFUBM
w %ZOBNJD w JNQMJDJUGFFECBDLΛͬͨώϡʔϦεςΟΫε *4.*3 1BNQBMLFUBM w BVEJPCBTFESFQSFTFOUBUJPOʹجͮ͘ۂΫϥελۭؒͷڧԽ ֶश 3FD4ZT ,JOHBOE*NCSBTBJUF
ؔ࿈ݚڀ w $POUFYUVBMCBOEJUT w /FXTDPOUFYUVBMCBOEJU 84%. -JFUBM w ۂΛBSNʹ͢ΔͱϢʔβʔମݧతʹΑ͘ͳ͍͔
w 0OMJOFMFBSOJOHUPSBOL w ΞΠςϜۭؒͷ࣍ݩಛྔΛBSNʹ͢Δ w ۂҰͭΛධՁ͢ΔͷʹϥϯΩϯάΛධՁ͢ΔJOUFSMFBWJOH ෆద
ઃఆ શۂσʔλ ਪનީิۂ
$%#"MHPSJUIN
$%#"MHPSJUIN VରϢʔβ TϢʔβ͕બΜͩॳظۂ NΞʔϜͷ Tͷϙδγϣϯ ॳظԽ
$%#"MHPSJUIN VରϢʔβ TϢʔβ͕બΜͩॳظۂ NΞʔϜͷ Tͷϙδγϣϯ ॳظԽ ϕΫτϧ୳ࡧ
$%#"MHPSJUIN
$%#"MHPSJUIN VରϢʔβ TϢʔβ͕બΜͩॳظۂ NΞʔϜͷ Tͷϙδγϣϯ ॳظԽ ϕΫτϧ୳ࡧ ධՁ
࣮ݧɿௐ߲ࠪ $%#ͲΕ΄Ͳֶ͘श͢Δ͔ $%#ऩଋ࣌ʹͲΕ΄ͲͷޮՌ͕͋Δ͔ EVFMͲͷΑ͏ʹӨڹ͢Δ͔
࣮ݧɿσʔληοτ w -BTUGN,EBUBTFU w ظؒɿ w ΧϥϜɿVTFS*% BSUJTU*% TPOH*% UJUMF
w 4QPUJGZ .VTJD#SBJO[ͷσʔλͱ݁߹ w VTFST TPOHT FWFOUT
࣮ݧɿධՁ
࣮ݧ݁Ռֶश ˠ-JO6$#ʹൺɺֶ͘शͰ͖͍ͯΔ
࣮ݧ݁ՌֶशޮՌ ˠ-JO6$#ʹൺɺޮՌతʹֶशͰ͖͍ͯΔ
࣮ݧ݁ՌEVFMͷӨڹ ˠNҎ߱Ͱ-JO6$#ʹൺɺใु͕ߴ͔ͬͨ
·ͱΊͱࠓޙͷ՝ w Իָͷਪનʹର͢ΔΦϯϥΠϯֶशख๏$%#ΛఏҊ w ύʔιφϥΠζ͔ͭগͳ͍GFFECBDLͷঢ়گطଘݚڀʹͳ͔ͬͨ w $POUFYUVBMCBOEJUͱͷൺֱ࣮ݧΛߦͬͨ w গͳ͍ϢʔβʔϑΟʔυόοΫͰޮՌతͳֶश w
ࠓޙͷ՝ w χϡʔεਪનͷద༻ w ࣮ੈքͷద༻
ॴײ w 4FRVFOUJBM3FDPNNFOEBUJPOͷΦϑϥΠϯධՁͷΓ ͔͕ͨΓ͔ͨͬͨͷͰࢀߟʹͳͬͨ w Իָਪનઃఆ͕໘ന͍ w ઃఆ͔Β͢Δͱ࣮ݧͷϕʔεϥΠϯଥ͔͠Εͳ ͍͕ɺ$'ͳͲ౷తͳख๏ͱͷਫ਼ͷҧ͍͕ؾʹͳΔ