$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Online Learning to Rank for Sequential Music Re...
Search
zr_4
October 05, 2019
Research
0
900
Online Learning to Rank for Sequential Music Recommendation
zr_4
October 05, 2019
Tweet
Share
More Decks by zr_4
See All by zr_4
ニュース記事の品質が広告消費行動に与える影響の調査
zr_4
0
990
パーソナライゼーションのためのマルチリービング
zr_4
3
1.1k
consumption.pdf
zr_4
0
330
Other Decks in Research
See All in Research
音声感情認識技術の進展と展望
nagase
0
360
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.9k
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
4
1.5k
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
110
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
840
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
430
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.1k
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
380
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
160
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
230
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
440
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
1k
Featured
See All Featured
Statistics for Hackers
jakevdp
799
230k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
The Invisible Side of Design
smashingmag
302
51k
How GitHub (no longer) Works
holman
316
140k
Scaling GitHub
holman
464
140k
Mobile First: as difficult as doing things right
swwweet
225
10k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
360
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Making Projects Easy
brettharned
120
6.5k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
690
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Transcript
0OMJOF-FBSOJOHUP3BOLGPS 4FRVFOUJBM.VTJD3FDPNNFOEBUJPO #-1FSFJSB "6FEB (1FOIB 3-54BOUPT /;JWJBOJ 3FD4ZTจಡΈձࢿྉ ൧௩ᔨೋ![S@
ஶऀհ w ॴଐ w 'FEFSBM6OJWFSTJUZPG.JOBT(FSBJT w ஶऀ w #SVOP-1FSFJSB w
"MCFSUP6FEB w (VTUBWP1FOIB w 3PESZHP-54BOUPT w /JWJP;JWJBOJ
എܠ w ԻָετϦʔϛϯάαʔϏεͷོ w ਓྗϓϨΠϦετͷݶք w Ϣʔβʔͷझଊ͍͑ͯͳ͍ w ͯ͢ͷۂΛΧόʔ͢Δͷແཧ w
աڈͷϩά zݱࡏͷηογϣϯz͔Βֶश͍ͨ͠ w ؾɺΞΫςΟϏςΟʹΑͬͯฉ͖͍ͨۂมΘΔ
ߩݙ w ϢʔβʔϑΟʔυόοΫΛ࿈ଓతʹֶश͢ΔΦϯϥΠϯϥϯ Ϋֶशख๏$PVOUFSGBDUVBM%VFMJOH#BOEJUT $%# ΛఏҊ w *NQMJDJUGFFECBDL QMBZPSBDUJPO ͷΈΛ͏
w ࣍ݩಛϕΫτϧΛείΞϦϯάʹ͏ w Ϟσϧ୳ࡧ࣌ʹҼՌਪ͢Δ w ࠷৽ͷΦϯϥΠϯֶशख๏ΑΓֶश͕ૣ͘ɺߴਫ਼Λୡ
ؔ࿈ݚڀ w "VUPNBUJD1MBZMJTU(FOFSBUJPO w 4UBUJD w .BSLPWSBOEPNpFMEBQQSPBDI 4*(.. 3BHOPFUBM
w %ZOBNJD w JNQMJDJUGFFECBDLΛͬͨώϡʔϦεςΟΫε *4.*3 1BNQBMLFUBM w BVEJPCBTFESFQSFTFOUBUJPOʹجͮ͘ۂΫϥελۭؒͷڧԽ ֶश 3FD4ZT ,JOHBOE*NCSBTBJUF
ؔ࿈ݚڀ w $POUFYUVBMCBOEJUT w /FXTDPOUFYUVBMCBOEJU 84%. -JFUBM w ۂΛBSNʹ͢ΔͱϢʔβʔମݧతʹΑ͘ͳ͍͔
w 0OMJOFMFBSOJOHUPSBOL w ΞΠςϜۭؒͷ࣍ݩಛྔΛBSNʹ͢Δ w ۂҰͭΛධՁ͢ΔͷʹϥϯΩϯάΛධՁ͢ΔJOUFSMFBWJOH ෆద
ઃఆ શۂσʔλ ਪનީิۂ
$%#"MHPSJUIN
$%#"MHPSJUIN VରϢʔβ TϢʔβ͕બΜͩॳظۂ NΞʔϜͷ Tͷϙδγϣϯ ॳظԽ
$%#"MHPSJUIN VରϢʔβ TϢʔβ͕બΜͩॳظۂ NΞʔϜͷ Tͷϙδγϣϯ ॳظԽ ϕΫτϧ୳ࡧ
$%#"MHPSJUIN
$%#"MHPSJUIN VରϢʔβ TϢʔβ͕બΜͩॳظۂ NΞʔϜͷ Tͷϙδγϣϯ ॳظԽ ϕΫτϧ୳ࡧ ධՁ
࣮ݧɿௐ߲ࠪ $%#ͲΕ΄Ͳֶ͘श͢Δ͔ $%#ऩଋ࣌ʹͲΕ΄ͲͷޮՌ͕͋Δ͔ EVFMͲͷΑ͏ʹӨڹ͢Δ͔
࣮ݧɿσʔληοτ w -BTUGN,EBUBTFU w ظؒɿ w ΧϥϜɿVTFS*% BSUJTU*% TPOH*% UJUMF
w 4QPUJGZ .VTJD#SBJO[ͷσʔλͱ݁߹ w VTFST TPOHT FWFOUT
࣮ݧɿධՁ
࣮ݧ݁Ռֶश ˠ-JO6$#ʹൺɺֶ͘शͰ͖͍ͯΔ
࣮ݧ݁ՌֶशޮՌ ˠ-JO6$#ʹൺɺޮՌతʹֶशͰ͖͍ͯΔ
࣮ݧ݁ՌEVFMͷӨڹ ˠNҎ߱Ͱ-JO6$#ʹൺɺใु͕ߴ͔ͬͨ
·ͱΊͱࠓޙͷ՝ w Իָͷਪનʹର͢ΔΦϯϥΠϯֶशख๏$%#ΛఏҊ w ύʔιφϥΠζ͔ͭগͳ͍GFFECBDLͷঢ়گطଘݚڀʹͳ͔ͬͨ w $POUFYUVBMCBOEJUͱͷൺֱ࣮ݧΛߦͬͨ w গͳ͍ϢʔβʔϑΟʔυόοΫͰޮՌతͳֶश w
ࠓޙͷ՝ w χϡʔεਪનͷద༻ w ࣮ੈքͷద༻
ॴײ w 4FRVFOUJBM3FDPNNFOEBUJPOͷΦϑϥΠϯධՁͷΓ ͔͕ͨΓ͔ͨͬͨͷͰࢀߟʹͳͬͨ w Իָਪનઃఆ͕໘ന͍ w ઃఆ͔Β͢Δͱ࣮ݧͷϕʔεϥΠϯଥ͔͠Εͳ ͍͕ɺ$'ͳͲ౷తͳख๏ͱͷਫ਼ͷҧ͍͕ؾʹͳΔ