Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
vol4_ねこIoTLT_ゴミ箱に捨てる前に 猫ヒゲロギング
Search
1027kg
October 21, 2020
Technology
0
110
vol4_ねこIoTLT_ゴミ箱に捨てる前に 猫ヒゲロギング
AWS Forecastを使った猫のヒゲが次いつ落ちてくるかの時系列予測実験
1027kg
October 21, 2020
Tweet
Share
More Decks by 1027kg
See All by 1027kg
vol6_ねこIoTLT_猫の健康と備えの話
1027kg
0
960
vol5_ねこIoTLT_もしもの為の迷子対策 Bluetoothタグ活用
1027kg
0
470
vol3_ねこIoTLT_猫のオシッコサインを お手軽に調べてみる話
1027kg
0
92
Other Decks in Technology
See All in Technology
AWSにおけるTrend Vision Oneの効果について
shimak
0
140
職種別ミートアップで社内から盛り上げる アウトプット文化の醸成と関係強化/ #DevRelKaigi
nishiuma
2
160
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
0
160
10年の共創が示す、これからの開発者と企業の関係 ~ Crossroad
soracom
PRO
1
640
PLaMo2シリーズのvLLM実装 / PFN LLM セミナー
pfn
PRO
2
1k
Adapty_東京AI祭ハッカソン2025ピッチスライド
shinoyamada
0
200
データエンジニアがこの先生きのこるには...?
10xinc
0
470
Adminaで実現するISMS/SOC2運用の効率化 〜 アカウント管理編 〜
shonansurvivors
4
400
実装で解き明かす並行処理の歴史
zozotech
PRO
1
630
Findy Team+のSOC2取得までの道のり
rvirus0817
0
500
AWS 잘하는 개발자 되기 - AWS 시작하기: 클라우드 개념부터 IAM까지
kimjaewook
0
120
Modern_Data_Stack最新動向クイズ_買収_AI_激動の2025年_.pdf
sagara
0
230
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Six Lessons from altMBA
skipperchong
28
4k
Building Adaptive Systems
keathley
43
2.8k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
970
Building Applications with DynamoDB
mza
96
6.7k
Building an army of robots
kneath
306
46k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Transcript
ねこIoTLT vol.4 ゴミ箱に捨てる前に 猫ヒゲロギング ~ AWS Forecastでの時系列予測 ~
自己紹介: 名前 : keiji(本体)@1027kg やっていること : 機械学習を中心に時々Webのバックエンドを書いています
名前 : える ♂ 種類 : キジトラ 身体情報 : 約7歳
5.1kg 性格 : スーパーチキン内弁慶
どうやらヒゲは 5種類 あるらしい 猫ヒゲについて ④頬骨毛 (きょうこつも う) 1~3本 ⑤頭下毛 (とうかもう)
数本 ③口角毛 (こうかくもう) 1~3本 ①上毛 (じょうもう) 5~7本 ②上唇毛 (じょうしんもう) 10数本 ※本数には個体差があります。
猫ヒゲ発見はちょっとしたイベント 髪の毛が抜けるのと同じく、猫のヒゲが落ちる タイミングは分からない。 太い毛なので割と見つけやすいが、注意してい ないと見落としてしまうアイテム。 掃除などをしている最中に発見できるものだ が、飼い主にとっては嬉しいイベントである。 (四つ葉のクローバーをイメージ)
ライフログの先駆者ゴードン・ベルさんに影響 を受けた変態なので、うちに来てからの「猫ヒ ゲ」はすべて保管しておりその日付も記録して ます。 今回はこのログデータを元に 「 いつ猫ヒゲが出現するのか 」 の予測を行います。 猫ヒゲを見つけたらとにかく記録
米マイクロソフト研究所 ゴードン・ベル主席研究員
猫ヒゲのログデータ性質 うちに猫が来て今まで発見した猫ヒゲの総数は 4 年 3 ヶ月 で 104本 です 実際に記録したデータはこんなイメージです
{ item_id: ID, timestamp: ヒゲを見つけた日, target_value: 0.0(なかった)か1.0(あった) } (記録は面倒だったので実際はGoogleHomeにIFTTTアプレット経由で声 にてGoogleCalに記録しています) (平均で計算すると14.91日に1本落ちてる計算)
AWS Forecastにデータを食わせる 時系列データから予測が行える「AWS Forecast」を利用 RETAIL ドメイン – 小売の需要予測 INVENTORY_PLANNING ドメイン
– サプライチェーンとインベントリの計画 EC2 CAPACITY ドメイン – Amazon EC2 キャパシティの予測 WORK_FORCE ドメイン – 従業員の計画 WEB_TRAFFIC ドメイン – 今後のウェブトラフィックの見積もり METRICS ドメイン – 収益およびキャッシュフローなどの予測メトリクス CUSTOM ドメイン – その他すべての時系列予測のタイプ 今回はこのドメインを使いました •提供されている時系列予測ドメイン
AWS Forecastでデータを予測してみよう 1. Dataset(データセット)の選択 S3に選択したモデルに対応したCSV形式のデータを置いて予測の実行 ※選択するアルゴリズムやモデルによってはメタデータもアタッチする必要あり ※今回のカスタムモデルでは単純なデータだが1,000以上のデータセットが必須 2. Predictor(推論モデル)の選択 標準はAutoMLだが、めちゃ遅かった(数時間)ので今回は「CNN-QR」を選択
※ここは解決したいタスクによってモデルを選ぶ 3. Forecast(予測)の生成 2のモデルを使用して予測データを作る 予測のデータは重みをセット出来る
けっかはっぴょー(Forecastの母 10/15にヒゲが出現 するかも… (それでも0.5139) Forecastの母
けっかはっぴょー(実績 10/16に ヒゲ発見!!
まとめ 1. 役に立つかは後で考えてとにかくデータは貯めておくこと 2. AWSF Forecast のPredict(推論)とForecast(予測)は めっちゃ時間かかる ・トータルで3時間ぐらい掛かったので猫と遊びながら待ちましょう ・パラメータは個別にイジれるのでepochなど変えてみよう
ご清聴有難う御座いました