Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
vol4_ねこIoTLT_ゴミ箱に捨てる前に 猫ヒゲロギング
Search
1027kg
October 21, 2020
Technology
0
110
vol4_ねこIoTLT_ゴミ箱に捨てる前に 猫ヒゲロギング
AWS Forecastを使った猫のヒゲが次いつ落ちてくるかの時系列予測実験
1027kg
October 21, 2020
Tweet
Share
More Decks by 1027kg
See All by 1027kg
vol6_ねこIoTLT_猫の健康と備えの話
1027kg
0
960
vol5_ねこIoTLT_もしもの為の迷子対策 Bluetoothタグ活用
1027kg
0
470
vol3_ねこIoTLT_猫のオシッコサインを お手軽に調べてみる話
1027kg
0
92
Other Decks in Technology
See All in Technology
DDD集約とサービスコンテキスト境界との関係性
pandayumi
3
280
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
120
Snowflakeの生成AI機能を活用したデータ分析アプリの作成 〜Cortex AnalystとCortex Searchの活用とStreamlitアプリでの利用〜
nayuts
1
460
オブザーバビリティが広げる AIOps の世界 / The World of AIOps Expanded by Observability
aoto
PRO
0
340
人工衛星のファームウェアをRustで書く理由
koba789
13
7.1k
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
210
開発者を支える Internal Developer Portal のイマとコレカラ / To-day and To-morrow of Internal Developer Portals: Supporting Developers
aoto
PRO
1
440
なぜスクラムはこうなったのか?歴史が教えてくれたこと/Shall we explore the roots of Scrum
sanogemaru
5
1.6k
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
230
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
190
AIのグローバルトレンド2025 #scrummikawa / global ai trend
kyonmm
PRO
1
260
生成AIでセキュリティ運用を効率化する話
sakaitakeshi
0
500
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
42
2.8k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
What's in a price? How to price your products and services
michaelherold
246
12k
Agile that works and the tools we love
rasmusluckow
330
21k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Site-Speed That Sticks
csswizardry
10
810
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
810
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Statistics for Hackers
jakevdp
799
220k
4 Signs Your Business is Dying
shpigford
184
22k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Transcript
ねこIoTLT vol.4 ゴミ箱に捨てる前に 猫ヒゲロギング ~ AWS Forecastでの時系列予測 ~
自己紹介: 名前 : keiji(本体)@1027kg やっていること : 機械学習を中心に時々Webのバックエンドを書いています
名前 : える ♂ 種類 : キジトラ 身体情報 : 約7歳
5.1kg 性格 : スーパーチキン内弁慶
どうやらヒゲは 5種類 あるらしい 猫ヒゲについて ④頬骨毛 (きょうこつも う) 1~3本 ⑤頭下毛 (とうかもう)
数本 ③口角毛 (こうかくもう) 1~3本 ①上毛 (じょうもう) 5~7本 ②上唇毛 (じょうしんもう) 10数本 ※本数には個体差があります。
猫ヒゲ発見はちょっとしたイベント 髪の毛が抜けるのと同じく、猫のヒゲが落ちる タイミングは分からない。 太い毛なので割と見つけやすいが、注意してい ないと見落としてしまうアイテム。 掃除などをしている最中に発見できるものだ が、飼い主にとっては嬉しいイベントである。 (四つ葉のクローバーをイメージ)
ライフログの先駆者ゴードン・ベルさんに影響 を受けた変態なので、うちに来てからの「猫ヒ ゲ」はすべて保管しておりその日付も記録して ます。 今回はこのログデータを元に 「 いつ猫ヒゲが出現するのか 」 の予測を行います。 猫ヒゲを見つけたらとにかく記録
米マイクロソフト研究所 ゴードン・ベル主席研究員
猫ヒゲのログデータ性質 うちに猫が来て今まで発見した猫ヒゲの総数は 4 年 3 ヶ月 で 104本 です 実際に記録したデータはこんなイメージです
{ item_id: ID, timestamp: ヒゲを見つけた日, target_value: 0.0(なかった)か1.0(あった) } (記録は面倒だったので実際はGoogleHomeにIFTTTアプレット経由で声 にてGoogleCalに記録しています) (平均で計算すると14.91日に1本落ちてる計算)
AWS Forecastにデータを食わせる 時系列データから予測が行える「AWS Forecast」を利用 RETAIL ドメイン – 小売の需要予測 INVENTORY_PLANNING ドメイン
– サプライチェーンとインベントリの計画 EC2 CAPACITY ドメイン – Amazon EC2 キャパシティの予測 WORK_FORCE ドメイン – 従業員の計画 WEB_TRAFFIC ドメイン – 今後のウェブトラフィックの見積もり METRICS ドメイン – 収益およびキャッシュフローなどの予測メトリクス CUSTOM ドメイン – その他すべての時系列予測のタイプ 今回はこのドメインを使いました •提供されている時系列予測ドメイン
AWS Forecastでデータを予測してみよう 1. Dataset(データセット)の選択 S3に選択したモデルに対応したCSV形式のデータを置いて予測の実行 ※選択するアルゴリズムやモデルによってはメタデータもアタッチする必要あり ※今回のカスタムモデルでは単純なデータだが1,000以上のデータセットが必須 2. Predictor(推論モデル)の選択 標準はAutoMLだが、めちゃ遅かった(数時間)ので今回は「CNN-QR」を選択
※ここは解決したいタスクによってモデルを選ぶ 3. Forecast(予測)の生成 2のモデルを使用して予測データを作る 予測のデータは重みをセット出来る
けっかはっぴょー(Forecastの母 10/15にヒゲが出現 するかも… (それでも0.5139) Forecastの母
けっかはっぴょー(実績 10/16に ヒゲ発見!!
まとめ 1. 役に立つかは後で考えてとにかくデータは貯めておくこと 2. AWSF Forecast のPredict(推論)とForecast(予測)は めっちゃ時間かかる ・トータルで3時間ぐらい掛かったので猫と遊びながら待ちましょう ・パラメータは個別にイジれるのでepochなど変えてみよう
ご清聴有難う御座いました