Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Comprehendで始める感情分析
Search
Shirota
August 04, 2022
Technology
0
1.6k
Amazon Comprehendで始める感情分析
2022年8月4日(木)に開催された「AKIBA.AWS ONLINE #09 -AWSを活用した機械学習 編- 」で登壇した際の資料です。
Shirota
August 04, 2022
Tweet
Share
More Decks by Shirota
See All by Shirota
Google Cloudでの自然言語処理のアプローチと所感大全(約2年分)
46ta
0
250
再ジョインブログの裏側の話(形態素解析パート)
46ta
0
12k
Amazon Braketのすごさを知ろう~量子コンピュータことはじめ~
46ta
0
2.7k
AWS Update and Region in number
46ta
0
580
Other Decks in Technology
See All in Technology
クラウド開発の舞台裏とSRE文化の醸成 / SRE NEXT 2025 Lunch Session
kazeburo
1
590
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
39k
ClaudeCode_vs_GeminiCLI_Terraformで比較してみた
tkikuchi
1
1.1k
助けて! XからWaylandに移行しないと新しいGNOMEが使えなくなっちゃう 2025-07-12
nobutomurata
2
200
How to Quickly Call American Airlines®️ U.S. Customer Care : Full Guide
flyaahelpguide
0
240
AI エージェントと考え直すデータ基盤
na0
20
7.9k
Rethinking Incident Response: Context-Aware AI in Practice
rrreeeyyy
2
940
アクセスピークを制するオートスケール再設計: 障害を乗り越えKEDAで実現したリソース管理の最適化
myamashii
1
670
Copilot coding agentにベットしたいCTOが開発組織で取り組んだこと / GitHub Copilot coding agent in Team
tnir
0
190
TLSから見るSREの未来
atpons
2
310
LIXIL基幹システム刷新に立ち向かう技術的アプローチについて
tsukuha
1
380
Four Keysから始める信頼性の改善 - SRE NEXT 2025
ozakikota
0
420
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Code Reviewing Like a Champion
maltzj
524
40k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Navigating Team Friction
lara
187
15k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
340
Automating Front-end Workflow
addyosmani
1370
200k
Testing 201, or: Great Expectations
jmmastey
43
7.6k
Why Our Code Smells
bkeepers
PRO
337
57k
Transcript
Amazon Comprehend から始める感情分析 AKIBA.AWS ONLINE #09 -AWSを活用した機械学習 編- 2022/08/04(Thu.) Shirota
データアナリティクス事業本部機械学習チーム所属 2022年1月入社(3年半ぶり2回目) 高エネルギー宇宙物理学専攻→インフラエンジニア →バーチャルソリューションアーキテクト(AWS) →バーチャルMLエンジニア 最近はGoogle Cloudにお熱 住まいはバーチャル愛知県のバーチャル名古屋市 → Shirota
今日の話し手
Amazon Comprehendとは? 今日話すこと 1 2 3 4 そもそも感情分析とは ネガポジ分析のやり方 それぞれの手法の長所・短所
Amazon Comprehend とは?
Amazon Comprehend とは? 機械学習を使用して、 テキストからインサイトや関係性を発見するための 自然言語処理 (NLP) サービス 引用:https://aws.amazon.com/jp/comprehend/
😀?
つまりどういうこと?
Amazon Comprehend とは? テキスト Amazon Comprehend 色々 できる 機械学習
もう少し深掘りしよう
Amazon Comprehendで できる色々 カスタム分類 エンティティ認識 カスタムエンティティ 認識 感情分析 エンティティ特化の
感情分析 PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
Amazon Comprehendで できる色々 カスタム分類 エンティティ認識 カスタムエンティティ 認識 感情分析 エンティティ特化の
感情分析 手持ちの文章を利用し てカスタムしたラベリ ングでテキストを分類 できる
Amazon Comprehendで できる色々 カスタム分類 エンティティ認識 カスタムエンティティ 認識 感情分析 エンティティ特化の
感情分析 文章中のエンティティ (各単語)を識別する 特殊な状況を学習させ たカスタムモデルを作 成・利用した識別もで きる
Amazon Comprehendで できる色々 PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
PII(個人情報)を識別 してマスクをかけるこ とができる
Amazon Comprehendで できる色々 PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
文章内で重要なフレーズ を抽出する 「誰が」「いつ」「どこ で」といった情報を 抽出する
Amazon Comprehendで できる色々 PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
何語で書かれた文章かを 分析する 文章を単語サイズに分解 して品詞の識別をする (いわゆる形態素解析)
Amazon Comprehendで できる色々 PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
文章内の単語からトピッ クを分類し、S3に配置し ているドキュメントファ イルがどのトピックに関 連したものかを分析する
Amazon Comprehendで できる感情分析関連 カスタム分類 エンティティ認識 カスタムエンティティ 認識 感情分析 エンティティ特化の
感情分析 ← New!! (2022.03) PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
そもそも感情分析って なんだろう
感情分析 とは? 自然言語処理を用いて 自然言語(人間が使っている言葉)を コンピュータで処理できるようにし、 そこから感情を分析すること
感情分析 とは? 今日は雨が降っていて いまいち元気が出ない
感情分析 とは?
感情分析 とは? 今日は雨が降っていて いまいち元気が出ない
これは ネガポジ分析
ネガポジ分析やってみたい!
それ、機械学習無くても できるんですよ
None
ネガポジ分析の手法 極性辞書を使う ディープラーニングを用いる
ネガポジ分析の手法 極性辞書を使う(機械学習不要) ディープラーニングを用いる
極性辞書とは 単語に極性情報を付与している辞書 ネガティブ・ポジティブを -1(ネガティブ)〜 +1(ポジティブ)に 振り分けた数値を極性値と呼ぶ
極性辞書を使う メリット・デメリット 既に用意されたものを使えるので学習コストが低く、 それなりの結果が得られる Pythonで使えるライブラリ「oseti」があったり 柔軟性が低い 辞書のカスタムが大変 カスタムのためには学習コストも生じる
ネガポジ分析の手法 極性辞書を使う(機械学習不要) ディープラーニングを用いる
ディープラーニングを用いて ネガポジ分析をする 文章と極性情報のラベルが揃った 教師データを用意してディープラーニングを行い 作成したモデルでネガポジ分析を行う
ディープラーニングを使う メリット・デメリット 柔軟性が高い モデル学習を進めることによって利用する環境に 合ったモデルが育っていく モデルを育てるまでが大変 モデルに利用するための教師データの用意 ディープラーニングそのものの学習コスト
本音 極性辞書を使う ディープラーニングを用いる 準備が少なくて、柔軟性もありそうな ディープラーニングを用いたやつが使いたい……
そこでComprehendですよ
「手っ取り早くやってみた」は ブログで!
Amazon Comprehendは 初めてのネガポジ分析挑戦に おすすめ!
ご清聴ありがとう ございました!