$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Comprehendで始める感情分析
Search
Shirota
August 04, 2022
Technology
0
1.8k
Amazon Comprehendで始める感情分析
2022年8月4日(木)に開催された「AKIBA.AWS ONLINE #09 -AWSを活用した機械学習 編- 」で登壇した際の資料です。
Shirota
August 04, 2022
Tweet
Share
More Decks by Shirota
See All by Shirota
Google Cloudでの自然言語処理のアプローチと所感大全(約2年分)
46ta
0
310
再ジョインブログの裏側の話(形態素解析パート)
46ta
0
12k
Amazon Braketのすごさを知ろう~量子コンピュータことはじめ~
46ta
0
2.8k
AWS Update and Region in number
46ta
0
600
Other Decks in Technology
See All in Technology
Introduce marp-ai-slide-generator
itarutomy
0
120
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.7k
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
170
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
1
400
MariaDB Connector/C のcaching_sha2_passwordプラグインの仕様について
boro1234
0
1k
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
380
障害対応訓練、その前に
coconala_engineer
0
200
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
120
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
140
モダンデータスタックの理想と現実の間で~1.3億人Vポイントデータ基盤の現在地とこれから~
taromatsui_cccmkhd
2
270
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
500
業務の煩悩を祓うAI活用術108選 / AI 108 Usages
smartbank
6
5.4k
Featured
See All Featured
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.2k
Everyday Curiosity
cassininazir
0
110
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
78
The Mindset for Success: Future Career Progression
greggifford
PRO
0
200
Evolving SEO for Evolving Search Engines
ryanjones
0
73
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
49k
Statistics for Hackers
jakevdp
799
230k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
69
Technical Leadership for Architectural Decision Making
baasie
0
180
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Side Projects
sachag
455
43k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
69
Transcript
Amazon Comprehend から始める感情分析 AKIBA.AWS ONLINE #09 -AWSを活用した機械学習 編- 2022/08/04(Thu.) Shirota
データアナリティクス事業本部機械学習チーム所属 2022年1月入社(3年半ぶり2回目) 高エネルギー宇宙物理学専攻→インフラエンジニア →バーチャルソリューションアーキテクト(AWS) →バーチャルMLエンジニア 最近はGoogle Cloudにお熱 住まいはバーチャル愛知県のバーチャル名古屋市 → Shirota
今日の話し手
Amazon Comprehendとは? 今日話すこと 1 2 3 4 そもそも感情分析とは ネガポジ分析のやり方 それぞれの手法の長所・短所
Amazon Comprehend とは?
Amazon Comprehend とは? 機械学習を使用して、 テキストからインサイトや関係性を発見するための 自然言語処理 (NLP) サービス 引用:https://aws.amazon.com/jp/comprehend/
😀?
つまりどういうこと?
Amazon Comprehend とは? テキスト Amazon Comprehend 色々 できる 機械学習
もう少し深掘りしよう
Amazon Comprehendで できる色々 カスタム分類 エンティティ認識 カスタムエンティティ 認識 感情分析 エンティティ特化の
感情分析 PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
Amazon Comprehendで できる色々 カスタム分類 エンティティ認識 カスタムエンティティ 認識 感情分析 エンティティ特化の
感情分析 手持ちの文章を利用し てカスタムしたラベリ ングでテキストを分類 できる
Amazon Comprehendで できる色々 カスタム分類 エンティティ認識 カスタムエンティティ 認識 感情分析 エンティティ特化の
感情分析 文章中のエンティティ (各単語)を識別する 特殊な状況を学習させ たカスタムモデルを作 成・利用した識別もで きる
Amazon Comprehendで できる色々 PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
PII(個人情報)を識別 してマスクをかけるこ とができる
Amazon Comprehendで できる色々 PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
文章内で重要なフレーズ を抽出する 「誰が」「いつ」「どこ で」といった情報を 抽出する
Amazon Comprehendで できる色々 PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
何語で書かれた文章かを 分析する 文章を単語サイズに分解 して品詞の識別をする (いわゆる形態素解析)
Amazon Comprehendで できる色々 PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
文章内の単語からトピッ クを分類し、S3に配置し ているドキュメントファ イルがどのトピックに関 連したものかを分析する
Amazon Comprehendで できる感情分析関連 カスタム分類 エンティティ認識 カスタムエンティティ 認識 感情分析 エンティティ特化の
感情分析 ← New!! (2022.03) PII 識別とリダクション キーフレーズ抽出 イベント検出 言語検出 構文解析 トピックモデリング
そもそも感情分析って なんだろう
感情分析 とは? 自然言語処理を用いて 自然言語(人間が使っている言葉)を コンピュータで処理できるようにし、 そこから感情を分析すること
感情分析 とは? 今日は雨が降っていて いまいち元気が出ない
感情分析 とは?
感情分析 とは? 今日は雨が降っていて いまいち元気が出ない
これは ネガポジ分析
ネガポジ分析やってみたい!
それ、機械学習無くても できるんですよ
None
ネガポジ分析の手法 極性辞書を使う ディープラーニングを用いる
ネガポジ分析の手法 極性辞書を使う(機械学習不要) ディープラーニングを用いる
極性辞書とは 単語に極性情報を付与している辞書 ネガティブ・ポジティブを -1(ネガティブ)〜 +1(ポジティブ)に 振り分けた数値を極性値と呼ぶ
極性辞書を使う メリット・デメリット 既に用意されたものを使えるので学習コストが低く、 それなりの結果が得られる Pythonで使えるライブラリ「oseti」があったり 柔軟性が低い 辞書のカスタムが大変 カスタムのためには学習コストも生じる
ネガポジ分析の手法 極性辞書を使う(機械学習不要) ディープラーニングを用いる
ディープラーニングを用いて ネガポジ分析をする 文章と極性情報のラベルが揃った 教師データを用意してディープラーニングを行い 作成したモデルでネガポジ分析を行う
ディープラーニングを使う メリット・デメリット 柔軟性が高い モデル学習を進めることによって利用する環境に 合ったモデルが育っていく モデルを育てるまでが大変 モデルに利用するための教師データの用意 ディープラーニングそのものの学習コスト
本音 極性辞書を使う ディープラーニングを用いる 準備が少なくて、柔軟性もありそうな ディープラーニングを用いたやつが使いたい……
そこでComprehendですよ
「手っ取り早くやってみた」は ブログで!
Amazon Comprehendは 初めてのネガポジ分析挑戦に おすすめ!
ご清聴ありがとう ございました!