Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
テキストマイニングによるプロ野球の順位予想 / Baseball Play Study 202...
Search
7pairs
December 17, 2020
Technology
0
530
テキストマイニングによるプロ野球の順位予想 / Baseball Play Study 2020 Winter
Baseball Play Study 2020 冬 シーズン振返りスペシャル (BPStudy#160)
の資料です。
7pairs
December 17, 2020
Tweet
Share
More Decks by 7pairs
See All by 7pairs
Pythonによる契約プログラミング入門 / PyCon JP 2025
7pairs
7
3.2k
Privacy Sandbox on Android / DroidKaigi 2024
7pairs
1
960
2020年の振り返りとBaseball Play Studyの振り返り / Jisyupy 29
7pairs
0
340
Because Python is there. / Jisyupy 27
7pairs
0
490
野球好きのための快適なプレゼンテーション環境の構築 / Baseball Play Study 2019 Winter
7pairs
0
1.1k
ちゃんと実装してちゃんとテストしよう / PyCon mini Hiroshima 2019
7pairs
2
1k
Pie Meets Py / PyCon JP 2019
7pairs
3
5.7k
テキストマイニングによる新外国人選手の分析 / Baseball Play Study 2019 Spring
7pairs
0
2.9k
テキストマイニングによる応援歌の分析 / Baseball Play Study 2018 Winter
7pairs
0
2.3k
Other Decks in Technology
See All in Technology
Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
peisuke
0
150
QAを"自動化する"ことの本質
kshino
1
140
未回答質問の回答一覧 / 開発をリードする品質保証 QAエンジニアと開発者の未来を考える-Findy Online Conference -
findy_eventslides
0
280
社内外から"使ってもらえる"データ基盤を支えるアーキテクチャの秘訣/登壇資料(飯塚 大地・高橋 一貴)
hacobu
PRO
0
970
クレジットカードの不正を防止する技術
yutadayo
17
7.8k
ソフトウェア開発現代史: 55%が変化に備えていない現実 ─ AI支援型開発時代のReboot Japan #agilejapan
takabow
7
4.4k
OSだってコンテナしたい❗Image Modeが切り拓くLinux OS運用の新時代
tsukaman
0
110
2ヶ月で新規事業のシステムを0から立ち上げるスタートアップの舞台裏
shmokmt
0
230
第65回コンピュータビジョン勉強会
tsukamotokenji
0
150
改竄して学ぶコンテナサプライチェーンセキュリティ ~コンテナイメージの完全性を目指して~/tampering-container-supplychain-security
mochizuki875
1
350
Quarkusで作るInteractive Stream Application
joker1007
0
150
はじめての OSS コントリビューション 〜小さな PR が世界を変える〜
chiroito
4
340
Featured
See All Featured
The Language of Interfaces
destraynor
162
25k
Mobile First: as difficult as doing things right
swwweet
225
10k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Music & Morning Musume
bryan
46
7k
GraphQLとの向き合い方2022年版
quramy
49
14k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
The World Runs on Bad Software
bkeepers
PRO
72
12k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Building Adaptive Systems
keathley
44
2.8k
Six Lessons from altMBA
skipperchong
29
4.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Writing Fast Ruby
sferik
630
62k
Transcript
ςΩετϚΠχϯάʹΑΔ ϓϩٿͷॱҐ༧ ୩ ५ / 2020-12-17 Baseball Play Study 2020ౙ
(BPStudy#160)
ͨΓোΓͷͳ͍ࣗݾհ • ୩ ५ (ͤ ͡ΎΜ) • Twitter / GitHubͰ
7pairs Ͱ׆ಈத • ࣗশAndroidΤϯδχΞ • Apple༷ͷؾ·͙ΕʹৼΓճ͞ΕͯࠓiOS͔͠৮͍ͬͯͳ͍ • ͖ͳϓϩάϥϛϯάݴޠ • PythonɼClojure • ৯ΔͨΊͷϓϩάϥϛϯάݴޠ • JavaɼObjective-CɼC#ɼJavaScript...
ͨΓোΓͷ͋Δࣗݾհ • ͖ͳٿ༻ޠ • FAݖΛߦͯ͠ཹɼੜ֔ϥΠΦϯζ • ͖ͩͬͨνϟϯς4 • ळࢁͷલ͔ΒྲྀΕΔΑ͏ʹҠߦ͢Δνϟϯς4 •
͖ͳελδΞϜάϧϝ • ࢰࢠϦΞϯϥΠεɼ3݄4݄10݄11݄ͷڱࢁ௮͚ɼ6݄7݄8݄ͷྫྷౚΈ͔Μ • ͖ͳ҉ࠇΫϦʔϯΞοϓτϦΦ • 3൪ϥΠτখؔɼ4൪ϑΝʔετླɼ5൪αʔυγΞϯϑϩοί (1999։ນઓ)
ຊͷΰʔϧ • ʮࣗԿ͔ͷੳΛ͍ͨ͠ʂʯͱ͍͏ؾ࣋ͪʹͳ͍ͬͯͨͩ͘ • ࡛ۄϥΠΦϯζͷެࣜΏΔΩϟϥͰ͋Δ Β͍ʹΐΜ͘Μͷ͔Θ͍͞Λཧղ͍ͯͨͩ͘͠
Β͍ʹΐΜ͘Μ͔Θ͍͍ʂ
ʹ΄Μ͠Γʔͣͬͯͳʹʁ
͘͞Β͖Ε͍ʔ
ΊΖΜͺʔΜ
͋ͬΔͺʔΜͪ
BPStudyͬΆ͍ٕज़ͷ
ςΩετϚΠχϯάͰॱҐΛ༧͢Δ • εϙʔπ৽ฉͷهࣄσʔλΛίʔύεͱ͠ɺword2vecͰ୯ޠΛϕΫτϧԽ • શࠃࢴࡿԼͷ4ࢴ͕ର (Ϧʔά༏উܾఆཌʹDT͕Ұ໘ʹདྷΔͷࢴ໘ͷެฏੑʹ͚ܽΔͨΊ) • αϯέΠεϙʔπ • εϙʔπχοϙϯ
• εϙʔπใ • ץεϙʔπ • 201910݄24 (ຊγϦʔζऴྃཌ) ͔Β20206݄18 (։ນલ) ͷهࣄ͕ର • νʔϜ໊Λ୯ޠͱͯ͠ͱΒ͑ɺʮ༏উʯͱͷྨࣅ͕ߴ͍ॱʹॱҐ͚
هࣄͷऩूํ๏ (20201݄͝Ζ·Ͱ) • εϙʔπ৽ฉͷαΠτΛఆظతʹΫϩʔϦϯά / εΫϨΠϐϯά • ScrapyΛར༻ • ݁ՌςΩετϑΝΠϧͱͯ͠Amazon
S3ʹอଘ • هࣄͷݕࡧͷͨΊʹElasticsearchʹσʔλΛొ • ੲͷهࣄ͕ඞཁʹͳͬͨ߹༗ྉαʔϏεͰߪೖ
2ճ͔͠ੳ͠ͳ͍ͷʹ ͓ۚΛ͔͚͗͢Ͱʁ
ίετݮʹ͚ͯ • ຊʹϦΞϧλΠϜͰ࣮ߦ͢Δඞཁ͕͋ΔͷΫϩʔϦϯά͚ͩ • ͕࣌ؒܦա͢ΔͱهࣄΛτοϓϖʔδ͔ΒḷΕͳ͘ͳΔͨΊ • εΫϨΠϐϯάҎ߱ੳͷલॲཧͱͯ͠खݩͰ࣮ࢪ͢Δ • ͜͜·ͰػೳΛߜΕαʔόʔϨεԽՄೳ •
Amazon S3Ҏ֎ແྉͰेߦ͚ͦ͏
هࣄͷऩूํ๏ (20202݄͝Ζ͔Β) • εϙʔπࢴͷαΠτΛఆظతʹΫϩʔϦϯά • AWS Lambda (Python) Λར༻ •
هࣄҰཡϖʔδΛղੳ͠ɺ֤هࣄϖʔδͷURLΛऔಘ • هࣄϖʔδੜHTMLͷ··S3ʹอଘ • ΫϩʔϦϯά࣮ࢪ࣌ͳͲɺཧ༻ͷใΛDynamoDBʹొ
ऩूج൫Λஔ͖͑ͨ݁Ռ͆͆͆͆͆
Ұ෦ͷσʔλΛ͏͔ͬΓ S3 GlacierʹҠಈ͍ͯͨͨ͠Ί Ή͠Ζ߹ܭίετ͕૿Ճ͠·ͨ͠
͓ͷΕGlacierΊ (ٯ࠘Έ)
άϥγΞϧ͡Όͳ͍Ͱ͢
݁Ռൃද
ηɾϦʔάॱҐ༧ / ݁Ռ ॱҐ ༧ ݁Ռ ಡച ಡച উഊ
ࡕਆ ࡕਆ উഊ ԣ%F/" த উഊ ౡ౦༸ ԣ%F/" উഊ த ౡ౦༸ উഊ ౦ژϠΫϧτ ౦ژϠΫϧτ উഊ
ύɾϦʔάॱҐ༧ / ݁Ռ ॱҐ ༧ ݁Ռ ԬιϑτόϯΫ ԬιϑτόϯΫ উഊ
౦ָఱ ઍ༿ϩος উഊ ઍ༿ϩος ࡛ۄ উഊ ւಓຊϋϜ ౦ָఱ উഊ ΦϦοΫε ւಓຊϋϜ উഊ ࡛ۄ ΦϦοΫε উഊ
(ΞΧϯ)
Ͱ͜ͷॱ൪ΛͲ͔͜ͰݟͨΑ͏ͳ
ผͷϥϯΩϯάͱൺֱͯ͠Έͨ
ηɾϦʔάಘࣦࠩ ॱҐ ॱҐ༧ ݁Ռ ಡച ಡച ࡕਆ
ԣ%F/" ԣ%F/" ࡕਆ ౡ౦༸ ౡ౦༸ த த ౦ژϠΫϧτ ౦ژϠΫϧτ
ύɾϦʔάಘࣦࠩ ॱҐ ॱҐ༧ ݁Ռ ԬιϑτόϯΫ ԬιϑτόϯΫ ౦ָఱ
౦ָఱ ઍ༿ϩος ઍ༿ϩος ւಓຊϋϜ ւಓຊϋϜ ΦϦοΫε ΦϦοΫε ࡛ۄ ࡛ۄ
ߦ͚ΔΜʂ (ͱͱॱҐ༧ͩͬͨͱ͍͏ࣄ࣮͔ΒΛͦΒ͠ͳ͕Β)
·ͱΊ
໌͔Βऩू / ੳΛ͢ΔͨΊʹ • Ճ౻ߞଠ (2019) PythonΫϩʔϦϯάˍεΫϨΠϐϯά [૿ิվగ൛] —
σʔλऩूɾղੳͷͨΊͷ࣮ફ։ൃΨΠυ ٕज़ධࣾ • ຊڮஐޫ (2018) લॲཧେશ — σʔλੳͷͨΊͷSQL/R/Python࣮ફςΫχοΫ ٕज़ධࣾ • ඌହ (2014) word2vecʹΑΔࣗવݴޠॲཧ ΦϥΠϦʔɾδϟύϯ
໌͔ΒσʔλͷऩूΛ࢝ΊΕ 1ޙʹ1ͷσʔλ͕ੵ͞Ε·͢
·ͱΊ • word2vecʹΑΔੳͰཌγʔζϯͷಘࣦࠩॱҐΛ ͋Δఔͷਫ਼ͰٻΊΔ͜ͱ͕Ͱ͖ͨ • Amazon S3ͷBucketͷઃఆʹࡉ৺ͷҙΛ͓͏ • কདྷͷࣗͷͨΊʹσʔλΛऩू͠Α͏
• Β͍ʹΐΜ͘Μ͔Θ͍͍ʂ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ དྷγʔζϯΑΖ͓͘͠ئ͍͠·͢