ML Session n°4

ML Session n°4

2696500a913e29a26f38115f8ea56f71?s=128

Adrien Couque

April 05, 2017
Tweet

Transcript

  1. ML: regularization and neural networks March 2017

  2. Recap

  3. Recap: linear regression

  4. Recap: polynomial regression

  5. Recap: gradient descent

  6. Regularization

  7. Normalization Goal : have all features be equivalent (in size)

    Rescaling : Standardization :
  8. Regularization : goal

  9. Regularization Before : Now : Forces values to stay low

  10. Neural networks

  11. Demo: Tensorflow Playground

  12. Biological neuron

  13. Artificial neuron: Perceptron

  14. Teaching a neuron

  15. Artifical neuron : activation function

  16. Most common activation functions Identity Sigmoid Tanh ReLU

  17. Teaching a neuron

  18. Demo: simple network, but the hard way (92%)

  19. Demo: simple network, but the hard way (92%)

  20. Artificial neuron -> Artificial neural network

  21. Artificial neuron -> Artificial neural network

  22. Teaching a neural net

  23. Demo: Tensorflow Playground

  24. Demo: layered network, still the hard way (97%)

  25. Questions? March 2017