Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Session n°3
Search
Adrien Couque
March 08, 2017
Technology
0
87
ML Session n°3
Adrien Couque
March 08, 2017
Tweet
Share
More Decks by Adrien Couque
See All by Adrien Couque
A roadmap to psychohistory
acq
0
82
ML Session n°8
acq
0
58
ML Session n°7
acq
0
21
ML Session n°6
acq
0
29
ML Session n°5
acq
0
51
ML Session n°4
acq
0
29
ML Session n°2
acq
1
79
ML Session n°1
acq
0
77
Intro to Machine Learning for Android developers
acq
0
190
Other Decks in Technology
See All in Technology
어떤 개발자가 되고 싶은가?
arawn
1
350
次世代のメールプロトコルの斜め読み
hirachan
0
120
re:Inventに行くまでにやっておきたいこと
nagisa53
0
880
serverless team topology
_kensh
3
250
設計に疎いエンジニアでも始めやすいアーキテクチャドキュメント
phaya72
21
14k
書籍『実践 Apache Iceberg』の歩き方
ishikawa_satoru
0
390
プロダクト開発と社内データ活用での、BI×AIの現在地 / Data_Findy
sansan_randd
1
720
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
410
アノテーション作業書作成のGood Practice
cierpa0905
PRO
1
350
知覚とデザイン
rinchoku
1
690
IBC 2025 動画技術関連レポート / IBC 2025 Report
cyberagentdevelopers
PRO
2
230
境界線が消える世界におけるQAエンジニアのキャリアの可能性を考える / Considering the Career Possibilities for QA Engineers
mii3king
2
110
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Optimizing for Happiness
mojombo
379
70k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
200
What's in a price? How to price your products and services
michaelherold
246
12k
How STYLIGHT went responsive
nonsquared
100
5.9k
The Cult of Friendly URLs
andyhume
79
6.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
A designer walks into a library…
pauljervisheath
209
24k
Transcript
ML: regression March 2017
Notations : Scalar (number) : Vector : Matrix : Transpose
of matrix X : Mean of vectors x : Estimate of vector value x
Simple linear regression
Solving simple linear regression Goal : find the best and
for Best ? Minimize the square residuals (least squares)
Solving simple linear regression: finding the best estimates for a
and b
Demo 1
Multivariate linear regression
Demo 2
Polynomial regression
Trick : still a linear regression ! Just create additional
columns, derived from pre-existing ones Then it comes back to a linear regression
Demo 3
Gradient descent
Gradient descent
Gradient descent
Normal equation vs gradient descent Normal equation Gradient descent No
additional parameters Need to choose a learning step No loop Needs to iterate : for inverse Slow if is large Works well when is large In practice : n < 10.000 ⇔ normal equation
Logistic regression Used for binary classification Decision boundary : 0.5
- y < 0.5 : class A - y >= 0.5 : class B
Logistic regression : cost function
Logistic regression : cost function
Demo 4: logistic regression + gradient descent
Questions? March 2017