Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Session n°3
Search
Adrien Couque
March 08, 2017
Technology
0
77
ML Session n°3
Adrien Couque
March 08, 2017
Tweet
Share
More Decks by Adrien Couque
See All by Adrien Couque
A roadmap to psychohistory
acq
0
56
ML Session n°8
acq
0
54
ML Session n°7
acq
0
20
ML Session n°6
acq
0
26
ML Session n°5
acq
0
48
ML Session n°4
acq
0
27
ML Session n°2
acq
1
69
ML Session n°1
acq
0
68
Intro to Machine Learning for Android developers
acq
0
190
Other Decks in Technology
See All in Technology
"サービスチーム" での技術選定 / Making Technology Decisions for the Service Team
kaminashi
1
190
2年でここまで成長!AWSで育てたAI Slack botの軌跡
iwamot
PRO
4
790
Yamla: Rustでつくるリアルタイム性を追求した機械学習基盤 / Yamla: A Rust-Based Machine Learning Platform Pursuing Real-Time Capabilities
lycorptech_jp
PRO
4
140
Javaで作る RAGを活用した Q&Aアプリケーション
recruitengineers
PRO
1
120
Tech-Verse 2025 Global CTO Session
lycorptech_jp
PRO
0
680
GeminiとNotebookLMによる金融実務の業務革新
abenben
0
240
AIとともに進化するエンジニアリング / Engineering-Evolving-with-AI_final.pdf
lycorptech_jp
PRO
0
110
mrubyと micro-ROSが繋ぐロボットの世界
kishima
2
360
AWS テクニカルサポートとエンドカスタマーの中間地点から見えるより良いサポートの活用方法
kazzpapa3
2
570
第9回情シス転職ミートアップ_テックタッチ株式会社
forester3003
0
260
強化されたAmazon Location Serviceによる新機能と開発者体験
dayjournal
3
230
PHPでWebブラウザのレンダリングエンジンを実装する
dip_tech
PRO
0
210
Featured
See All Featured
Designing for Performance
lara
609
69k
Designing Experiences People Love
moore
142
24k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
124
52k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
670
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Code Review Best Practice
trishagee
68
18k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
Transcript
ML: regression March 2017
Notations : Scalar (number) : Vector : Matrix : Transpose
of matrix X : Mean of vectors x : Estimate of vector value x
Simple linear regression
Solving simple linear regression Goal : find the best and
for Best ? Minimize the square residuals (least squares)
Solving simple linear regression: finding the best estimates for a
and b
Demo 1
Multivariate linear regression
Demo 2
Polynomial regression
Trick : still a linear regression ! Just create additional
columns, derived from pre-existing ones Then it comes back to a linear regression
Demo 3
Gradient descent
Gradient descent
Gradient descent
Normal equation vs gradient descent Normal equation Gradient descent No
additional parameters Need to choose a learning step No loop Needs to iterate : for inverse Slow if is large Works well when is large In practice : n < 10.000 ⇔ normal equation
Logistic regression Used for binary classification Decision boundary : 0.5
- y < 0.5 : class A - y >= 0.5 : class B
Logistic regression : cost function
Logistic regression : cost function
Demo 4: logistic regression + gradient descent
Questions? March 2017