Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Session n°3
Search
Adrien Couque
March 08, 2017
Technology
0
86
ML Session n°3
Adrien Couque
March 08, 2017
Tweet
Share
More Decks by Adrien Couque
See All by Adrien Couque
A roadmap to psychohistory
acq
0
80
ML Session n°8
acq
0
58
ML Session n°7
acq
0
21
ML Session n°6
acq
0
29
ML Session n°5
acq
0
51
ML Session n°4
acq
0
29
ML Session n°2
acq
1
77
ML Session n°1
acq
0
75
Intro to Machine Learning for Android developers
acq
0
190
Other Decks in Technology
See All in Technology
extension 現場で使えるXcodeショートカット一覧
ktombow
0
220
リーダーになったら未来を語れるようになろう/Speak the Future
sanogemaru
0
350
Azure Well-Architected Framework入門
tomokusaba
1
350
いま注目しているデータエンジニアリングの論点
ikkimiyazaki
0
630
Function calling機能をPLaMo2に実装するには / PFN LLMセミナー
pfn
PRO
0
990
Geospatialの世界最前線を探る [2025年版]
dayjournal
0
160
Exadata Database Service on Dedicated Infrastructure(ExaDB-D) UI スクリーン・キャプチャ集
oracle4engineer
PRO
3
5.5k
オープンソースでどこまでできる?フォーマル検証チャレンジ
msyksphinz
0
120
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
Adapty_東京AI祭ハッカソン2025ピッチスライド
shinoyamada
0
200
JAZUG 15周年記念 × JAT「AI Agent開発者必見:"今"のOracle技術で拡張するAzure × OCIの共存アーキテクチャ」
shisyu_gaku
0
130
そのWAFのブロック、どう活かす? サービスを守るための実践的多層防御と思考法 / WAF blocks defense decision
kaminashi
0
110
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
232
18k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
We Have a Design System, Now What?
morganepeng
53
7.8k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
The Language of Interfaces
destraynor
162
25k
Thoughts on Productivity
jonyablonski
70
4.9k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
For a Future-Friendly Web
brad_frost
180
9.9k
Speed Design
sergeychernyshev
32
1.1k
Building Applications with DynamoDB
mza
96
6.7k
Docker and Python
trallard
46
3.6k
Transcript
ML: regression March 2017
Notations : Scalar (number) : Vector : Matrix : Transpose
of matrix X : Mean of vectors x : Estimate of vector value x
Simple linear regression
Solving simple linear regression Goal : find the best and
for Best ? Minimize the square residuals (least squares)
Solving simple linear regression: finding the best estimates for a
and b
Demo 1
Multivariate linear regression
Demo 2
Polynomial regression
Trick : still a linear regression ! Just create additional
columns, derived from pre-existing ones Then it comes back to a linear regression
Demo 3
Gradient descent
Gradient descent
Gradient descent
Normal equation vs gradient descent Normal equation Gradient descent No
additional parameters Need to choose a learning step No loop Needs to iterate : for inverse Slow if is large Works well when is large In practice : n < 10.000 ⇔ normal equation
Logistic regression Used for binary classification Decision boundary : 0.5
- y < 0.5 : class A - y >= 0.5 : class B
Logistic regression : cost function
Logistic regression : cost function
Demo 4: logistic regression + gradient descent
Questions? March 2017