Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Session n°3
Search
Adrien Couque
March 08, 2017
Technology
0
79
ML Session n°3
Adrien Couque
March 08, 2017
Tweet
Share
More Decks by Adrien Couque
See All by Adrien Couque
A roadmap to psychohistory
acq
0
64
ML Session n°8
acq
0
54
ML Session n°7
acq
0
20
ML Session n°6
acq
0
26
ML Session n°5
acq
0
49
ML Session n°4
acq
0
27
ML Session n°2
acq
1
70
ML Session n°1
acq
0
69
Intro to Machine Learning for Android developers
acq
0
190
Other Decks in Technology
See All in Technology
cdk initで生成されるあのファイル達は何なのか/cdk-init-generated-files
tomoki10
1
670
IPA&AWSダブル全冠が明かす、人生を変えた勉強法のすべて
iwamot
PRO
2
230
AIでテストプロセス自動化に挑戦する
sakatakazunori
1
530
セキュアな社内Dify運用と外部連携の両立 ~AIによるAPIリスク評価~
zozotech
PRO
0
120
20250708オープンエンドな探索と知識発見
sakana_ai
PRO
4
1k
Data Engineering Study#30 LT資料
tetsuroito
1
180
ポストコロナ時代の SaaS におけるコスト削減の意義
izzii
1
470
全部AI、全員Cursor、ドキュメント駆動開発 〜DevinやGeminiも添えて〜
rinchsan
10
5.1k
LLM拡張解体新書/llm-extension-deep-dive
oracle4engineer
PRO
23
6.2k
Introduction to Bill One Development Engineer
sansan33
PRO
0
260
Microsoft Defender XDRで疲弊しないためのインシデント対応
sophiakunii
1
310
How Do I Contact Jetblue Airlines® Reservation Number: Fast Support Guide
thejetblueairhelpsupport
0
150
Featured
See All Featured
Side Projects
sachag
455
42k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Building an army of robots
kneath
306
45k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Facilitating Awesome Meetings
lara
54
6.5k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
282
13k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
Thoughts on Productivity
jonyablonski
69
4.7k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Transcript
ML: regression March 2017
Notations : Scalar (number) : Vector : Matrix : Transpose
of matrix X : Mean of vectors x : Estimate of vector value x
Simple linear regression
Solving simple linear regression Goal : find the best and
for Best ? Minimize the square residuals (least squares)
Solving simple linear regression: finding the best estimates for a
and b
Demo 1
Multivariate linear regression
Demo 2
Polynomial regression
Trick : still a linear regression ! Just create additional
columns, derived from pre-existing ones Then it comes back to a linear regression
Demo 3
Gradient descent
Gradient descent
Gradient descent
Normal equation vs gradient descent Normal equation Gradient descent No
additional parameters Need to choose a learning step No loop Needs to iterate : for inverse Slow if is large Works well when is large In practice : n < 10.000 ⇔ normal equation
Logistic regression Used for binary classification Decision boundary : 0.5
- y < 0.5 : class A - y >= 0.5 : class B
Logistic regression : cost function
Logistic regression : cost function
Demo 4: logistic regression + gradient descent
Questions? March 2017