Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Session n°3
Search
Adrien Couque
March 08, 2017
Technology
0
53
ML Session n°3
Adrien Couque
March 08, 2017
Tweet
Share
More Decks by Adrien Couque
See All by Adrien Couque
A roadmap to psychohistory
acq
0
48
ML Session n°8
acq
0
52
ML Session n°7
acq
0
16
ML Session n°6
acq
0
23
ML Session n°5
acq
0
45
ML Session n°4
acq
0
24
ML Session n°2
acq
1
50
ML Session n°1
acq
0
45
Intro to Machine Learning for Android developers
acq
0
180
Other Decks in Technology
See All in Technology
AI前提のサービス運用ってなんだろう?
ryuichi1208
8
1.5k
ExaDB-D dbaascli で出来ること
oracle4engineer
PRO
0
3.9k
組織成長を加速させるオンボーディングの取り組み
sudoakiy
3
330
SDN の Hype Cycle を一通り経験してみて思うこと / Going through the Hype Cycle of SDN
mshindo
3
270
心が動くエンジニアリング ── 私が夢中になる理由
16bitidol
0
120
B2B SaaSから見た最近のC#/.NETの進化
sansantech
PRO
0
1.1k
10XにおけるData Contractの導入について: Data Contract事例共有会
10xinc
7
730
SSMRunbook作成の勘所_20241120
koichiotomo
3
190
初心者向けAWS Securityの勉強会mini Security-JAWSを9ヶ月ぐらい実施してきての近況
cmusudakeisuke
0
150
静的解析で実現した効率的なi18n対応の仕組みづくり
minako__ph
2
1.4k
OOM発生時のトラブルシューティング Profilerを活用できるか調査してみた
atsushii
0
150
Platform Engineering for Software Developers and Architects
syntasso
1
600
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
297
20k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
RailsConf 2023
tenderlove
29
910
For a Future-Friendly Web
brad_frost
175
9.4k
Optimising Largest Contentful Paint
csswizardry
33
2.9k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Building Adaptive Systems
keathley
38
2.3k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
730
Building an army of robots
kneath
302
43k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
47
2.1k
How to Ace a Technical Interview
jacobian
276
23k
Transcript
ML: regression March 2017
Notations : Scalar (number) : Vector : Matrix : Transpose
of matrix X : Mean of vectors x : Estimate of vector value x
Simple linear regression
Solving simple linear regression Goal : find the best and
for Best ? Minimize the square residuals (least squares)
Solving simple linear regression: finding the best estimates for a
and b
Demo 1
Multivariate linear regression
Demo 2
Polynomial regression
Trick : still a linear regression ! Just create additional
columns, derived from pre-existing ones Then it comes back to a linear regression
Demo 3
Gradient descent
Gradient descent
Gradient descent
Normal equation vs gradient descent Normal equation Gradient descent No
additional parameters Need to choose a learning step No loop Needs to iterate : for inverse Slow if is large Works well when is large In practice : n < 10.000 ⇔ normal equation
Logistic regression Used for binary classification Decision boundary : 0.5
- y < 0.5 : class A - y >= 0.5 : class B
Logistic regression : cost function
Logistic regression : cost function
Demo 4: logistic regression + gradient descent
Questions? March 2017