Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Session n°3
Search
Adrien Couque
March 08, 2017
Technology
0
69
ML Session n°3
Adrien Couque
March 08, 2017
Tweet
Share
More Decks by Adrien Couque
See All by Adrien Couque
A roadmap to psychohistory
acq
0
54
ML Session n°8
acq
0
53
ML Session n°7
acq
0
17
ML Session n°6
acq
0
25
ML Session n°5
acq
0
46
ML Session n°4
acq
0
25
ML Session n°2
acq
1
61
ML Session n°1
acq
0
58
Intro to Machine Learning for Android developers
acq
0
180
Other Decks in Technology
See All in Technology
初めてのPostgreSQLメジャーバージョンアップ
kkato1
0
410
ソフトウェアプロジェクトの成功率が上がらない原因-「社会価値を考える」ということ-
ytanaka5569
0
130
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
20k
大規模プロジェクトにおける 品質管理の要点と実践 / 20250327 Suguru Ishii
shift_evolve
0
280
OCI見積もり入門セミナー
oracle4engineer
PRO
0
120
Cloud Native PG 使ってみて気づいたことと最新機能の紹介 - 第52回PostgreSQLアンカンファレンス
seinoyu
2
200
17年のQA経験が導いたスクラムマスターへの道 / 17 Years in QA to Scrum Master
toma_sm
0
400
Compose MultiplatformにおけるiOSネイティブ実装のベストプラクティス
enomotok
1
210
スケールアップ企業のQA組織のバリューを最大限に引き出すための取り組み
tarappo
4
930
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
300
[CATS]Amazon Bedrock GenUハンズオン座学資料 #2 GenU環境でRAGを体験してみよう
tsukuboshi
0
140
ISUCONにPHPで挑み続けてできるようになっ(てき)たこと / phperkaigi2025
blue_goheimochi
0
140
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
28
2k
Gamification - CAS2011
davidbonilla
81
5.2k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Docker and Python
trallard
44
3.3k
A Philosophy of Restraint
colly
203
16k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Why Our Code Smells
bkeepers
PRO
336
57k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
135
33k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
Code Review Best Practice
trishagee
67
18k
RailsConf 2023
tenderlove
29
1k
Transcript
ML: regression March 2017
Notations : Scalar (number) : Vector : Matrix : Transpose
of matrix X : Mean of vectors x : Estimate of vector value x
Simple linear regression
Solving simple linear regression Goal : find the best and
for Best ? Minimize the square residuals (least squares)
Solving simple linear regression: finding the best estimates for a
and b
Demo 1
Multivariate linear regression
Demo 2
Polynomial regression
Trick : still a linear regression ! Just create additional
columns, derived from pre-existing ones Then it comes back to a linear regression
Demo 3
Gradient descent
Gradient descent
Gradient descent
Normal equation vs gradient descent Normal equation Gradient descent No
additional parameters Need to choose a learning step No loop Needs to iterate : for inverse Slow if is large Works well when is large In practice : n < 10.000 ⇔ normal equation
Logistic regression Used for binary classification Decision boundary : 0.5
- y < 0.5 : class A - y >= 0.5 : class B
Logistic regression : cost function
Logistic regression : cost function
Demo 4: logistic regression + gradient descent
Questions? March 2017