Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Session n°3
Search
Adrien Couque
March 08, 2017
Technology
0
84
ML Session n°3
Adrien Couque
March 08, 2017
Tweet
Share
More Decks by Adrien Couque
See All by Adrien Couque
A roadmap to psychohistory
acq
0
77
ML Session n°8
acq
0
55
ML Session n°7
acq
0
21
ML Session n°6
acq
0
29
ML Session n°5
acq
0
51
ML Session n°4
acq
0
29
ML Session n°2
acq
1
75
ML Session n°1
acq
0
73
Intro to Machine Learning for Android developers
acq
0
190
Other Decks in Technology
See All in Technology
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
260
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
460
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
270
LLMを搭載したプロダクトの品質保証の模索と学び
qa
1
1.1k
ブロックテーマ時代における、テーマの CSS について考える Toro_Unit / 2025.09.13 @ Shinshu WordPress Meetup
torounit
0
130
データ分析エージェント Socrates の育て方
na0
8
2.9k
共有と分離 - Compose Multiplatform "本番導入" の設計指針
error96num
2
1.2k
react-callを使ってダイヤログをいろんなとこで再利用しよう!
shinaps
2
270
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
2
470
20250905_MeetUp_Ito-san_s_presentation.pdf
magicpod
1
100
Android Audio: Beyond Winning On It
atsushieno
0
3.4k
Codeful Serverless / 一人運用でもやり抜く力
_kensh
7
460
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
930
How to Ace a Technical Interview
jacobian
279
23k
Speed Design
sergeychernyshev
32
1.1k
How GitHub (no longer) Works
holman
315
140k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
KATA
mclloyd
32
14k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
RailsConf 2023
tenderlove
30
1.2k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Gamification - CAS2011
davidbonilla
81
5.4k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
Transcript
ML: regression March 2017
Notations : Scalar (number) : Vector : Matrix : Transpose
of matrix X : Mean of vectors x : Estimate of vector value x
Simple linear regression
Solving simple linear regression Goal : find the best and
for Best ? Minimize the square residuals (least squares)
Solving simple linear regression: finding the best estimates for a
and b
Demo 1
Multivariate linear regression
Demo 2
Polynomial regression
Trick : still a linear regression ! Just create additional
columns, derived from pre-existing ones Then it comes back to a linear regression
Demo 3
Gradient descent
Gradient descent
Gradient descent
Normal equation vs gradient descent Normal equation Gradient descent No
additional parameters Need to choose a learning step No loop Needs to iterate : for inverse Slow if is large Works well when is large In practice : n < 10.000 ⇔ normal equation
Logistic regression Used for binary classification Decision boundary : 0.5
- y < 0.5 : class A - y >= 0.5 : class B
Logistic regression : cost function
Logistic regression : cost function
Demo 4: logistic regression + gradient descent
Questions? March 2017