Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Session n°3
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Adrien Couque
March 08, 2017
Technology
0
94
ML Session n°3
Adrien Couque
March 08, 2017
Tweet
Share
More Decks by Adrien Couque
See All by Adrien Couque
A roadmap to psychohistory
acq
0
91
ML Session n°8
acq
0
59
ML Session n°7
acq
0
24
ML Session n°6
acq
0
31
ML Session n°5
acq
0
55
ML Session n°4
acq
0
30
ML Session n°2
acq
1
84
ML Session n°1
acq
0
84
Intro to Machine Learning for Android developers
acq
0
190
Other Decks in Technology
See All in Technology
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
130
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.3k
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
230
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
240
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
180
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
130
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
400
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.8k
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
130
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
210
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
430
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
174
15k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
49k
From π to Pie charts
rasagy
0
120
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
ラッコキーワード サービス紹介資料
rakko
1
2.3M
A better future with KSS
kneath
240
18k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Rails Girls Zürich Keynote
gr2m
96
14k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Transcript
ML: regression March 2017
Notations : Scalar (number) : Vector : Matrix : Transpose
of matrix X : Mean of vectors x : Estimate of vector value x
Simple linear regression
Solving simple linear regression Goal : find the best and
for Best ? Minimize the square residuals (least squares)
Solving simple linear regression: finding the best estimates for a
and b
Demo 1
Multivariate linear regression
Demo 2
Polynomial regression
Trick : still a linear regression ! Just create additional
columns, derived from pre-existing ones Then it comes back to a linear regression
Demo 3
Gradient descent
Gradient descent
Gradient descent
Normal equation vs gradient descent Normal equation Gradient descent No
additional parameters Need to choose a learning step No loop Needs to iterate : for inverse Slow if is large Works well when is large In practice : n < 10.000 ⇔ normal equation
Logistic regression Used for binary classification Decision boundary : 0.5
- y < 0.5 : class A - y >= 0.5 : class B
Logistic regression : cost function
Logistic regression : cost function
Demo 4: logistic regression + gradient descent
Questions? March 2017