Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Session n°3
Search
Adrien Couque
March 08, 2017
Technology
0
84
ML Session n°3
Adrien Couque
March 08, 2017
Tweet
Share
More Decks by Adrien Couque
See All by Adrien Couque
A roadmap to psychohistory
acq
0
77
ML Session n°8
acq
0
55
ML Session n°7
acq
0
21
ML Session n°6
acq
0
29
ML Session n°5
acq
0
51
ML Session n°4
acq
0
29
ML Session n°2
acq
1
75
ML Session n°1
acq
0
73
Intro to Machine Learning for Android developers
acq
0
190
Other Decks in Technology
See All in Technology
Android Audio: Beyond Winning On It
atsushieno
0
2.4k
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
10
75k
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
270
LLMを搭載したプロダクトの品質保証の模索と学び
qa
0
1.1k
新規プロダクトでプロトタイプから正式リリースまでNext.jsで開発したリアル
kawanoriku0
1
160
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
160
なぜテストマネージャの視点が 必要なのか? 〜 一歩先へ進むために 〜
moritamasami
0
230
AI時代を生き抜くエンジニアキャリアの築き方 (AI-Native 時代、エンジニアという道は 「最大の挑戦の場」となる) / Building an Engineering Career to Thrive in the Age of AI (In the AI-Native Era, the Path of Engineering Becomes the Ultimate Arena of Challenge)
jeongjaesoon
0
220
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
890
20250912_RPALT_データを集める→とっ散らかる問題_Obsidian紹介
ratsbane666
0
100
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
310
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
260
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
GraphQLとの向き合い方2022年版
quramy
49
14k
A designer walks into a library…
pauljervisheath
207
24k
We Have a Design System, Now What?
morganepeng
53
7.8k
Automating Front-end Workflow
addyosmani
1370
200k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Designing Experiences People Love
moore
142
24k
RailsConf 2023
tenderlove
30
1.2k
Embracing the Ebb and Flow
colly
87
4.8k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Transcript
ML: regression March 2017
Notations : Scalar (number) : Vector : Matrix : Transpose
of matrix X : Mean of vectors x : Estimate of vector value x
Simple linear regression
Solving simple linear regression Goal : find the best and
for Best ? Minimize the square residuals (least squares)
Solving simple linear regression: finding the best estimates for a
and b
Demo 1
Multivariate linear regression
Demo 2
Polynomial regression
Trick : still a linear regression ! Just create additional
columns, derived from pre-existing ones Then it comes back to a linear regression
Demo 3
Gradient descent
Gradient descent
Gradient descent
Normal equation vs gradient descent Normal equation Gradient descent No
additional parameters Need to choose a learning step No loop Needs to iterate : for inverse Slow if is large Works well when is large In practice : n < 10.000 ⇔ normal equation
Logistic regression Used for binary classification Decision boundary : 0.5
- y < 0.5 : class A - y >= 0.5 : class B
Logistic regression : cost function
Logistic regression : cost function
Demo 4: logistic regression + gradient descent
Questions? March 2017