Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Session n°3
Search
Adrien Couque
March 08, 2017
Technology
0
92
ML Session n°3
Adrien Couque
March 08, 2017
Tweet
Share
More Decks by Adrien Couque
See All by Adrien Couque
A roadmap to psychohistory
acq
0
86
ML Session n°8
acq
0
59
ML Session n°7
acq
0
23
ML Session n°6
acq
0
31
ML Session n°5
acq
0
53
ML Session n°4
acq
0
30
ML Session n°2
acq
1
82
ML Session n°1
acq
0
82
Intro to Machine Learning for Android developers
acq
0
190
Other Decks in Technology
See All in Technology
AWS Lambda durable functions を使って AWS Lambda の15分の壁を超えてみよう
matsuzawatakeshi
0
120
スクラムマスターが スクラムチームに入って取り組む5つのこと - スクラムガイドには書いてないけど入った当初から取り組んでおきたい大切なこと -
scrummasudar
0
380
Agentic AIが変革するAWSの開発・運用・セキュリティ ~Frontier Agentsを試してみた~ / Agentic AI transforms AWS development, operations, and security I tried Frontier Agents
yuj1osm
0
170
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
2k
Keynoteから見るAWSの頭の中
nrinetcom
PRO
1
150
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
380
ハッカソンから社内プロダクトへ AIエージェント ko☆shi 開発で学んだ4つの重要要素
leveragestech
0
490
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
260
2025年 山梨の技術コミュニティを振り返る
yuukis
0
140
Directions Asia 2025 _ Let’s build my own secretary (AI Agent) Part 1 & 2
ryoheig0405
0
110
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
2
590
[PR] はじめてのデジタルアイデンティティという本を書きました
ritou
0
650
Featured
See All Featured
First, design no harm
axbom
PRO
1
1.1k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
We Are The Robots
honzajavorek
0
130
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
69
The Curious Case for Waylosing
cassininazir
0
200
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
96
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
380
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Transcript
ML: regression March 2017
Notations : Scalar (number) : Vector : Matrix : Transpose
of matrix X : Mean of vectors x : Estimate of vector value x
Simple linear regression
Solving simple linear regression Goal : find the best and
for Best ? Minimize the square residuals (least squares)
Solving simple linear regression: finding the best estimates for a
and b
Demo 1
Multivariate linear regression
Demo 2
Polynomial regression
Trick : still a linear regression ! Just create additional
columns, derived from pre-existing ones Then it comes back to a linear regression
Demo 3
Gradient descent
Gradient descent
Gradient descent
Normal equation vs gradient descent Normal equation Gradient descent No
additional parameters Need to choose a learning step No loop Needs to iterate : for inverse Slow if is large Works well when is large In practice : n < 10.000 ⇔ normal equation
Logistic regression Used for binary classification Decision boundary : 0.5
- y < 0.5 : class A - y >= 0.5 : class B
Logistic regression : cost function
Logistic regression : cost function
Demo 4: logistic regression + gradient descent
Questions? March 2017