Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Session n°3
Search
Adrien Couque
March 08, 2017
Technology
0
92
ML Session n°3
Adrien Couque
March 08, 2017
Tweet
Share
More Decks by Adrien Couque
See All by Adrien Couque
A roadmap to psychohistory
acq
0
85
ML Session n°8
acq
0
59
ML Session n°7
acq
0
23
ML Session n°6
acq
0
31
ML Session n°5
acq
0
53
ML Session n°4
acq
0
30
ML Session n°2
acq
1
82
ML Session n°1
acq
0
81
Intro to Machine Learning for Android developers
acq
0
190
Other Decks in Technology
See All in Technology
なぜ あなたはそんなに re:Invent に行くのか?
miu_crescent
PRO
0
130
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
370
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
470
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
210
AI との良い付き合い方を僕らは誰も知らない
asei
0
230
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
740
AlmaLinux + KVM + Cockpit で始めるお手軽仮想化基盤 ~ 開発環境などでの利用を想定して ~
koedoyoshida
0
150
LayerX QA Night#1
koyaman2
0
220
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
120
JEDAI認定プログラム JEDAI Order 2026 エントリーのご案内 / JEDAI Order 2026 Entry
databricksjapan
0
160
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
190
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
130
Featured
See All Featured
Designing for humans not robots
tammielis
254
26k
The Curse of the Amulet
leimatthew05
0
4.6k
Amusing Abliteration
ianozsvald
0
69
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
81
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Discover your Explorer Soul
emna__ayadi
2
1k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
160
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Transcript
ML: regression March 2017
Notations : Scalar (number) : Vector : Matrix : Transpose
of matrix X : Mean of vectors x : Estimate of vector value x
Simple linear regression
Solving simple linear regression Goal : find the best and
for Best ? Minimize the square residuals (least squares)
Solving simple linear regression: finding the best estimates for a
and b
Demo 1
Multivariate linear regression
Demo 2
Polynomial regression
Trick : still a linear regression ! Just create additional
columns, derived from pre-existing ones Then it comes back to a linear regression
Demo 3
Gradient descent
Gradient descent
Gradient descent
Normal equation vs gradient descent Normal equation Gradient descent No
additional parameters Need to choose a learning step No loop Needs to iterate : for inverse Slow if is large Works well when is large In practice : n < 10.000 ⇔ normal equation
Logistic regression Used for binary classification Decision boundary : 0.5
- y < 0.5 : class A - y >= 0.5 : class B
Logistic regression : cost function
Logistic regression : cost function
Demo 4: logistic regression + gradient descent
Questions? March 2017