Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2023年度秋学期 統計学 第7回 データの関係を知る(2) ― 回帰と決定係数 (2023....
Search
Akira Asano
PRO
October 25, 2023
Education
0
190
2023年度秋学期 統計学 第7回 データの関係を知る(2) ― 回帰と決定係数 (2023. 11. 7)
関西大学総合情報学部 統計学(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2023a/STAT/
Akira Asano
PRO
October 25, 2023
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2024年度秋学期 統計学 第7回 データの関係を知る(2)ー 回帰と決定係数 (2024. 11. 6)
akiraasano
PRO
0
7
2024年度秋学期 画像情報処理 第7回 主成分分析とKarhunen-Loève変換 (2024. 11. 8)
akiraasano
PRO
0
4
2024年度秋学期 統計学 第6回 データの関係を知る(1)ー相関関係 (2024. 10. 30)
akiraasano
PRO
0
27
2024年度秋学期 画像情報処理 第5回 離散フーリエ変換,フーリエ変換の実例 (2024. 10. 25)
akiraasano
PRO
0
21
2024年度秋学期 画像情報処理 第6回 ベクトルと行列について,高速フーリエ変換 (2024. 10. 25)
akiraasano
PRO
0
6
2024年度秋学期 統計学 第5回 分布をまとめるー記述統計量(平均・分散など) (2024. 10. 23)
akiraasano
PRO
0
63
2024年度秋学期 画像情報処理 第4回 フーリエ変換とサンプリング定理 (2024. 10. 18)
akiraasano
PRO
0
29
2024年度秋学期 統計学 第4回 データを「分布」で見る (2024. 10. 16)
akiraasano
PRO
0
60
2024年度秋学期 画像情報処理 第3回 フーリエ級数とフーリエ変換 (2024. 10. 11)
akiraasano
PRO
0
26
Other Decks in Education
See All in Education
#英語力ランキング批判:EF-EPI,TOEFLスコア,英語教育実施状況調査
terasawat
0
530
AWS All Certが伝える 新AWS認定試験取得のコツ (Machine Learning Engineer - Associate)
nnydtmg
1
500
Contentless Marketing
jonoalderson
0
1.5k
アニメに学ぶチームの多様性とコンピテンシー
terahide
0
200
謙虚なアジャイルコーチ__アダプティブ_ムーブ_による伴走支援.pdf
antmiyabin
0
240
Canva
matleenalaakso
0
380
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
650
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
2.4k
Kaggle 班ができるまで
abap34
1
180
Tableau トレーニング【株式会社ニジボックス】
nbkouhou
0
16k
cbt2324
cbtlibrary
0
110
コンセプトシェアハウス講演資料
uchinomasahiro
0
360
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Rails Girls Zürich Keynote
gr2m
93
13k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9k
Speed Design
sergeychernyshev
24
560
How to Ace a Technical Interview
jacobian
275
23k
Intergalactic Javascript Robots from Outer Space
tanoku
268
27k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Learning to Love Humans: Emotional Interface Design
aarron
272
40k
The Power of CSS Pseudo Elements
geoffreycrofte
72
5.3k
Designing the Hi-DPI Web
ddemaree
280
34k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Build The Right Thing And Hit Your Dates
maggiecrowley
32
2.4k
Transcript
浅野 晃 関西大学総合情報学部 2023年度秋学期 統計学 データの関係を知る(2)—回帰と決定係数 第7回
38 2 回帰分析とは🤔🤔
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 回帰分析とは 3 多変量データがあるとき ある変量の変化を他の変量の変化で [説明]する方法
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 回帰分析とは 3 多変量データがあるとき ある変量の変化を他の変量の変化で [説明]する方法 説明?🤔🤔
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 回帰分析とは 4 緯度と気温のデータを例にとると 相関分析 「緯度が上がると,気温が下がる」という 傾向があることを見いだす 回帰分析
「緯度が上がるから気温が下がる」と考える 緯度が1度上がると,気温が◯℃下がる 緯度と気温の,どちらがどちらに影響しているかは考えない
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 回帰分析とは 5 緯度が上がるから気温が下がると考える 緯度が1度上がると,気温が◯℃下がる 各都市の気温の違いは,緯度によって決まっているという[モデル]を考える 統計学では, 気温の分散は,緯度によって[説明]されるという
そして,そのモデルでどの程度説明がつくかを考える ※「決まっている」というのは,緯度によって気温が決まるメカニズムがあると いう意味ではなく,緯度の違いによって気温の違いが推測できる,という意味
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 説明変数・被説明変数 6 [説明変数] % % % %
% % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温は緯度によって説明される(というモデル) [被説明変数]
38 7 線形単回帰🤔🤔
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 8 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温の分散は緯度によって 説明される どう説明される?どういうモデルか?
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 8 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温の分散は緯度によって 説明される どう説明される?どういうモデルか?
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 8 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温の分散は緯度によって 説明される どう説明される?どういうモデルか? 散布図上で直線の関係がある, というモデルを考える
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 9 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 散布図上で直線の関係がある x y y = a + bx という式で表される関係 [線形単回帰] という
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 10
直線の式は y = ax + b と習ったような🤔🤔 どちらも正解です y = ax + b y = a + bx 昇冪(しょうべき)順 降冪(こうべき)順
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は 説明変数を付け加えて いくことができる 気温 緯度 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 説明変数を付け加えて いくことができる 気温 緯度 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 説明変数を付け加えて いくことができる 気温 緯度 標高 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 + b3x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 + b3x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 海からの距離 … ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 + b3x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 海からの距離 … ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる 説明変数が2つ以上ある場合を重回帰という
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 + b3x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 海からの距離 … ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 統計では,昇冪順を使うことが多い 何次関数かすぐわかる 説明変数が2つ以上ある場合を重回帰という
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係 a や b (パラメータ)はどうやって求める?
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y y = a + bx
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y y = a + bx x = xi のとき
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx x = xi のとき
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi y = a + bx 差 yi – (a + bxi ) x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi 差が最小になるように a,b を決める
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi y = a + bx 差 yi – (a + bxi ) x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 14 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi – (a + bxi )
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての xi について,差の合計が最小になるようにa, b を決める
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi – (a + bxi )
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての xi について,差の合計が最小になるようにa, b を決める
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi – (a + bxi ) の2乗
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての xi について,差の合計が最小になるようにa, b を決める
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi – (a + bxi ) L = n i=1 {yi − (a + bxi)}2 の2乗
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての xi について,差の合計が最小になるようにa, b を決める
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi – (a + bxi ) L = n i=1 {yi − (a + bxi)}2 が最小になるa, b を求める の2乗
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 Lが最小になるa,bを求める 15 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) 付録に収録してある数式の展開は,試験の範囲には含みません。 今から,「偏微分による方法」の考え方 (数式そのものではなくて考え方)を説明します。
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L a だけの関数と考えて微分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L a だけの関数と考えて微分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L a だけの関数と考えて微分 b だけの関数と考えて微分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L a だけの関数と考えて微分 b だけの関数と考えて微分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L a だけの関数と考えて微分 b だけの関数と考えて微分 微分?😵😵
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算 下り(–)
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算 下り(–) 上り(+)
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算 下り(–) 上り(+) 底では微分=0
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算 下り(–) 上り(+) 底では微分=0 b についても同じ,底では微分=0
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算 下り(–) 上り(+) 底では微分=0 b についても同じ,底では微分=0 底で L が最小だから, これらから a, b を求める
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2)
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy
σ2 x a = ¯ y − b¯ x
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy
σ2 x a = ¯ y − b¯ x x, y の共分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy
σ2 x a = ¯ y − b¯ x x, y の共分散 x の分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy
σ2 x a = ¯ y − b¯ x x, y の共分散 x の分散 y の平均
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy
σ2 x a = ¯ y − b¯ x x, y の共分散 x の分散 x の平均 y の平均
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 最小二乗法 19 を最小にしたので[最小二乗法] b = σxy σ2
x a = ¯ y − b¯ x [回帰係数] L = n i=1 {yi − (a + bxi)}2 y = a + bx [回帰方程式]あるいは[回帰直線]
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 ところで 20 x y x % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) y y = a + bx 帰係数 a = ¯ y − b¯ x から y − ¯ y = b(x − ¯ x) 回帰直線は を通る (¯ x, ¯ y)
38 21 線形単回帰の結果を使う💡💡
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = 44.60 + (−0.850) × 25.0 = 23.35 → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = 44.60 + (−0.850) × 25.0 = 23.35 → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は y = 23.35 を通る y = 44.60 + (−0.850) × 25.0 = 23.35 → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は y = 23.35 を通る y = 44.60 + (−0.850) × 25.0 = 23.35 → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 y = 5 を代入すると %
% % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 y = 5 を代入すると %
% % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 y = 5 を代入すると %
% % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 回帰直線は x = 46.59 を通る 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 y = 5 を代入すると %
% % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 回帰直線は x = 46.59 を通る 直 線 が ひ け る 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 y = 5 を代入すると %
% % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 回帰直線は x = 46.59 を通る 直 線 が ひ け る 計算結果と図が合っていることを たしかめましょう 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する % % % %
% % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a +
bx に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a +
bx に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a +
bx に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 35.0度 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a +
bx に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 35.0度 推定14.85℃ 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a +
bx に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 35.0度 推定14.85℃ 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 → 計算結果と図が合っている ことをたしかめましょう
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a +
bx に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a +
bx に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 34.68度 推定15.12℃
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a +
bx に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 表にある 実際の気温は16.2℃ 34.68度 推定15.12℃
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a +
bx に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 表にある 実際の気温は16.2℃ 34.68度 実測16.2℃ 推定15.12℃
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a +
bx に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 表にある 実際の気温は16.2℃ 34.68度 実測16.2℃ 推定15.12℃ 推定値と実測値に 差がある →次の話へ
38 26 決定係数と「説明」🤔🤔
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差 27 a, b が求められて,回帰直線が確定したとき % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi xi に対する,回帰直線による y の推定値
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差 27 a, b が求められて,回帰直線が確定したとき % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi ˆ yi = a + bxi xi に対する,回帰直線による y の推定値
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差 27 a, b が求められて,回帰直線が確定したとき % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 回帰直線が確定しても残っている, 推定値と実測値の差 ˆ yi = a + bxi xi に対する,回帰直線による y の推定値 ˆ yi yi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差 27 a, b が求められて,回帰直線が確定したとき % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 回帰直線が確定しても残っている, 推定値と実測値の差 ˆ yi = a + bxi xi に対する,回帰直線による y の推定値 ˆ yi yi この差を[残差]という di
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 残差について,次の関係がなりたつ(付録3)
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3)
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数 相関係数の2乗 [決定係数]
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数 相関係数の2乗 [決定係数] 🤔🤔…
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 d2 i = (1 −
r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 d2 i = (1 −
r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 d2 i = (1 −
r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1
− r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1
− r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1
− r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n y の偏差の2乗の平均 = y の分散 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1
− r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n y の偏差の2乗の平均 = y の分散 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1
− r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n y の偏差の2乗の平均 = y の分散 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 30 残差の2乗の平均 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y の偏差の2乗の平均 ( y の分散) x y y di = yi – yi [残差] y i y i – y [偏差] y i x i
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 30 残差の2乗の平均 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y の偏差の2乗の平均 ( y の分散) もともと y はこんなに ばらついていたが, 回帰直線から見ると ばらつきはこんなに減った x y y di = yi – yi [残差] y i y i – y [偏差] y i x i
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 30 残差の2乗の平均 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y の偏差の2乗の平均 ( y の分散) もともと y はこんなに ばらついていたが, 回帰直線から見ると ばらつきはこんなに減った x y y di = yi – yi [残差] y i y i – y [偏差] y i x i
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 31 回帰直線からのばらつき 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y のもともとのばらつき 決定係数 =
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 31 回帰直線からのばらつき 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y のもともとのばらつき 決定係数 = 回帰直線によるばらつきの減少の度合い
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 31 回帰直線からのばらつき 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y のもともとのばらつき 決定係数 = 回帰直線によるばらつきの減少の度合い = 回帰直線によって,ばらつきの何%が「説明」できたか
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき x y もとの y の分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき x y もとの y の分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき 回帰直線に対する y の分散 x y もとの y の分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき 回帰直線に対する y の分散 x y もとの y の分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき 回帰直線に対する y の分散 x y もとの y の分散 回帰直線に対するyの分散は
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき 回帰直線に対する y の分散 x y もとの y の分散 回帰直線に対するyの分散は もとの y の分散と
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 まったく変わらない 相関係数 = 0,すなわち 決定係数
= 0 のとき 回帰直線に対する y の分散 x y もとの y の分散 回帰直線に対するyの分散は もとの y の分散と
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 まったく変わらない 相関係数 = 0,すなわち 決定係数
= 0 のとき 回帰直線に対する y の分散 x y もとの y の分散 回帰直線に対するyの分散は もとの y の分散と 「回帰直線のまわりに散らばっている」と 説明したところで, 全く説明になっていない
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 に比べて半分になっている 相関係数 = 0.7 すなわち
決定係数 ≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 に比べて半分になっている 相関係数 = 0.7 すなわち
決定係数 ≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 「回帰直線のまわりに散らばっている」と 説明したことで, もとの y の分散の半分を説明した x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 に比べて20%に減っている 相関係数 = 0.9 すなわち
決定係数 ≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 に比べて20%に減っている 相関係数 = 0.9 すなわち
決定係数 ≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 「回帰直線のまわりに散らばっている」と 説明したことで, もとの y の分散の80%を説明した x y
38 35 ところで,前回の講義で 言いかけていたことですが💬💬💦💦
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 x
y x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 回帰直線ではもとの
y の分散の 25%しか説明できていない x y x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 回帰直線ではもとの
y の分散の 25%しか説明できていない x y x y 回帰直線でもとの y の分散の 50%を説明している
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 こちらのほうが,中くらいの相関関係
(分散の説明という意味では) 回帰直線ではもとの y の分散の 25%しか説明できていない x y x y 回帰直線でもとの y の分散の 50%を説明している
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 ✢ ✢
✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定
✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定
✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定
平均から離れた個体がある と安定する ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定
平均から離れた個体がある と安定する ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 注意すべき例 38 x y こういう分布だと
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 注意すべき例 38 全体で見ると弱い正の相関に見えるが x y こういう分布だと
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 注意すべき例 38 全体で見ると弱い正の相関に見えるが x y こういう分布だと 群ごとに見ると負の相関
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 注意すべき例 38 相関係数や回帰直線は どんなデータであっても計算 「できてしまう」ことに注意 全体で見ると弱い正の相関に見えるが x
y こういう分布だと 群ごとに見ると負の相関
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 注意すべき例 38 相関係数や回帰直線は どんなデータであっても計算 「できてしまう」ことに注意 全体で見ると弱い正の相関に見えるが 得られた回帰直線は,
それが意味のあるものかどうか, よく考えましょう。 x y こういう分布だと 群ごとに見ると負の相関