Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2023年度秋学期 統計学 第7回 データの関係を知る(2) ― 回帰と決定係数 (2023....
Search
Akira Asano
PRO
October 25, 2023
Education
0
230
2023年度秋学期 統計学 第7回 データの関係を知る(2) ― 回帰と決定係数 (2023. 11. 7)
関西大学総合情報学部 統計学(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2023a/STAT/
Akira Asano
PRO
October 25, 2023
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2025年度秋学期 画像情報処理 第6回 ベクトルと行列について(数学の補足説明・第2部の準備),高速フーリエ変換 (2025. 10. 31)
akiraasano
PRO
0
4
2025年度秋学期 画像情報処理 第7回 主成分分析とKarhunen-Loève変換 (2025. 11. 7)
akiraasano
PRO
0
3
2025年度秋学期 応用数学(解析) 第6回 変数分離形の変形 (2025. 10. 31)
akiraasano
PRO
0
6
2025年度秋学期 応用数学(解析) 第7回 2階線形微分方程式(1) (2025. 11. 7)
akiraasano
PRO
0
4
2025年度秋学期 画像情報処理 第5回 離散フーリエ変換,フーリエ変換の実例と関連する話題 (2025. 10. 31)
akiraasano
PRO
0
15
2025年度秋学期 応用数学(解析) 第5回 微分方程式とは・変数分離形 (2025. 10. 31)
akiraasano
PRO
0
17
2025年度秋学期 応用数学(解析) 第4回 収束とは何か,ε-δ論法 (2025. 10. 17)
akiraasano
PRO
0
35
2025年度秋学期 画像情報処理 第4回 フーリエ変換とサンプリング定理 (2025. 10. 17)
akiraasano
PRO
0
18
2025年度秋学期 画像情報処理 第3回 フーリエ級数とフーリエ変換 (2025. 10. 10)
akiraasano
PRO
0
19
Other Decks in Education
See All in Education
Avoin jakaminen ja Creative Commons -lisenssit
matleenalaakso
0
2k
AI for Learning
fonylew
0
200
日本の情報系社会人院生のリアル -JAIST 修士編-
yurikomium
1
150
ロータリー国際大会について~国際大会に参加しよう~:古賀 真由美 会員(2720 Japan O.K. ロータリーEクラブ・(有)誠邦産業 取締役)
2720japanoke
1
330
Презентация "Знаю Россию"
spilsart
0
300
The knowledge panel is your new homepage
bradwetherall
0
200
Портфолио - Шынар Ауелбекова
shynar
0
120
SISTEMA DE MEMORIA Y SU IMPACTO EN LAS DECISIONES.
jvpcubias
0
180
20250830_本社にみんなの公園を作ってみた
yoneyan
0
140
吉岡研究室紹介(2025年度)
kentaroy47
0
480
Introdución ás redes
irocho
0
380
DIP_2_Spatial
hachama
0
190
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Thoughts on Productivity
jonyablonski
71
4.9k
How STYLIGHT went responsive
nonsquared
100
5.9k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Code Review Best Practice
trishagee
72
19k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Writing Fast Ruby
sferik
630
62k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Visualization
eitanlees
150
16k
Optimizing for Happiness
mojombo
379
70k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Transcript
浅野 晃 関西大学総合情報学部 2023年度秋学期 統計学 データの関係を知る(2)—回帰と決定係数 第7回
38 2 回帰分析とは🤔🤔
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 回帰分析とは 3 多変量データがあるとき ある変量の変化を他の変量の変化で [説明]する方法
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 回帰分析とは 3 多変量データがあるとき ある変量の変化を他の変量の変化で [説明]する方法 説明?🤔🤔
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 回帰分析とは 4 緯度と気温のデータを例にとると 相関分析 「緯度が上がると,気温が下がる」という 傾向があることを見いだす 回帰分析
「緯度が上がるから気温が下がる」と考える 緯度が1度上がると,気温が◯℃下がる 緯度と気温の,どちらがどちらに影響しているかは考えない
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 回帰分析とは 5 緯度が上がるから気温が下がると考える 緯度が1度上がると,気温が◯℃下がる 各都市の気温の違いは,緯度によって決まっているという[モデル]を考える 統計学では, 気温の分散は,緯度によって[説明]されるという
そして,そのモデルでどの程度説明がつくかを考える ※「決まっている」というのは,緯度によって気温が決まるメカニズムがあると いう意味ではなく,緯度の違いによって気温の違いが推測できる,という意味
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 説明変数・被説明変数 6 [説明変数] % % % %
% % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温は緯度によって説明される(というモデル) [被説明変数]
38 7 線形単回帰🤔🤔
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 8 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温の分散は緯度によって 説明される どう説明される?どういうモデルか?
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 8 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温の分散は緯度によって 説明される どう説明される?どういうモデルか?
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 8 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 気温の分散は緯度によって 説明される どう説明される?どういうモデルか? 散布図上で直線の関係がある, というモデルを考える
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 9 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 散布図上で直線の関係がある x y y = a + bx という式で表される関係 [線形単回帰] という
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 10
直線の式は y = ax + b と習ったような🤔🤔 どちらも正解です y = ax + b y = a + bx 昇冪(しょうべき)順 降冪(こうべき)順
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は 説明変数を付け加えて いくことができる 気温 緯度 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 説明変数を付け加えて いくことができる 気温 緯度 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 説明変数を付け加えて いくことができる 気温 緯度 標高 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 + b3x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 + b3x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 海からの距離 … ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 + b3x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 海からの距離 … ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 何次関数かすぐわかる 説明変数が2つ以上ある場合を重回帰という
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 y = a + bx ? 11
y = ax + b y = a + bx 昇冪(しょうべき)順は 降冪(こうべき)順は + b2x2 + b3x3 + … 説明変数を付け加えて いくことができる 気温 緯度 標高 海からの距離 … ただちに1次関数とわかる y = ax2 + bx + c これは2次関数 統計では,昇冪順を使うことが多い 何次関数かすぐわかる 説明変数が2つ以上ある場合を重回帰という
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 線形単回帰 12 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = a + bx という式で表される関係 a や b (パラメータ)はどうやって求める?
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y y = a + bx
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y y = a + bx x = xi のとき
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx x = xi のとき
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi y = a + bx x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi % % %
% % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi y = a + bx 差 yi – (a + bxi ) x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 13 実際は yi 差が最小になるように a,b を決める
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi y = a + bx 差 yi – (a + bxi ) x = xi のとき モデルによれば y = a + bxi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 14 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi – (a + bxi )
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての xi について,差の合計が最小になるようにa, b を決める
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi – (a + bxi )
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての xi について,差の合計が最小になるようにa, b を決める
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi – (a + bxi ) の2乗
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての xi について,差の合計が最小になるようにa, b を決める
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi – (a + bxi ) L = n i=1 {yi − (a + bxi)}2 の2乗
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 パラメータの決定 14 すべての xi について,差の合計が最小になるようにa, b を決める
% % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 差 yi – (a + bxi ) L = n i=1 {yi − (a + bxi)}2 が最小になるa, b を求める の2乗
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 Lが最小になるa,bを求める 15 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) 付録に収録してある数式の展開は,試験の範囲には含みません。 今から,「偏微分による方法」の考え方 (数式そのものではなくて考え方)を説明します。
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L a だけの関数と考えて微分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L a だけの関数と考えて微分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L a だけの関数と考えて微分 b だけの関数と考えて微分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L a だけの関数と考えて微分 b だけの関数と考えて微分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「偏微分」による方法 16 L = n i=1 {yi
− (a + bxi)}2 が最小になるa, b を求める a, b の2次関数 a b L ★ a b L a だけの関数と考えて微分 b だけの関数と考えて微分 微分?😵😵
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算 下り(–)
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算 下り(–) 上り(+)
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算 下り(–) 上り(+) 底では微分=0
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算 下り(–) 上り(+) 底では微分=0 b についても同じ,底では微分=0
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 微分? 17 a b L ★ a
b L a だけの関数と考えて微分 微分は,傾きを求める計算 下り(–) 上り(+) 底では微分=0 b についても同じ,底では微分=0 底で L が最小だから, これらから a, b を求める
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2)
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy
σ2 x a = ¯ y − b¯ x
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy
σ2 x a = ¯ y − b¯ x x, y の共分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy
σ2 x a = ¯ y − b¯ x x, y の共分散 x の分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy
σ2 x a = ¯ y − b¯ x x, y の共分散 x の分散 y の平均
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 計算はともかく結論は 18 •偏微分による方法(付録1) •「2次関数の最大・最小」による方法(付録2) b = σxy
σ2 x a = ¯ y − b¯ x x, y の共分散 x の分散 x の平均 y の平均
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 最小二乗法 19 を最小にしたので[最小二乗法] b = σxy σ2
x a = ¯ y − b¯ x [回帰係数] L = n i=1 {yi − (a + bxi)}2 y = a + bx [回帰方程式]あるいは[回帰直線]
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 ところで 20 x y x % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) y y = a + bx 帰係数 a = ¯ y − b¯ x から y − ¯ y = b(x − ¯ x) 回帰直線は を通る (¯ x, ¯ y)
38 21 線形単回帰の結果を使う💡💡
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = 44.60 + (−0.850) × 25.0 = 23.35 → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y y = 44.60 + (−0.850) × 25.0 = 23.35 → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は y = 23.35 を通る y = 44.60 + (−0.850) × 25.0 = 23.35 → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温(前回の講義)の例で 22 緯度をx,気温をyとして回帰直線 を求めると y = a
+ bx b = − 0.850, a = 44.60 縦軸の位置(x = 25)のとき y の値は y = a + bx に x = 25.0 を代入 % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度)x y 回帰直線は y = 23.35 を通る y = 44.60 + (−0.850) × 25.0 = 23.35 → 散布図上に回帰直線をひく
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 % % % % %
% % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 y = 5 を代入すると %
% % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 y = 5 を代入すると %
% % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 y = 5 を代入すると %
% % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 回帰直線は x = 46.59 を通る 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 y = 5 を代入すると %
% % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 回帰直線は x = 46.59 を通る 直 線 が ひ け る 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 散布図上に回帰直線をひく 23 y = 5 を代入すると %
% % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 回帰直線は y = 23.35 を通る 横軸の位置(y = 5)のとき x の値は y = a + bx より x = y − a b x = (5 − 44.60)/(−0.850) = 46.59 回帰直線は x = 46.59 を通る 直 線 が ひ け る 計算結果と図が合っていることを たしかめましょう 緯度をx,気温をyとして回帰直線 を求めると y = a + bx b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する % % % %
% % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a +
bx に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a +
bx に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a +
bx に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 35.0度 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a +
bx に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 35.0度 推定14.85℃ 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 →
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 24 緯度35.0度の都市の気温は何℃かを推定する y = a +
bx に x = 35.0 を代入すると % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 35.0度 推定14.85℃ 44.60 + (−0.850) × 35.0 (℃) = 14.85 緯度をx,気温をyとして回帰直線 y = a + bx を求めると b = − 0.850, a = 44.60 → 計算結果と図が合っている ことをたしかめましょう
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a +
bx に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a +
bx に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 34.68度 推定15.12℃
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a +
bx に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 表にある 実際の気温は16.2℃ 34.68度 推定15.12℃
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a +
bx に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 表にある 実際の気温は16.2℃ 34.68度 実測16.2℃ 推定15.12℃
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 求めた回帰直線を使って 25 表の中にある大阪市(緯度34.68度)の気温を推定 y = a +
bx に x = 34.68 を代入 44.60 + (−0.850) × 34.68 = 15.12 (℃) % % % % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y 表にある 実際の気温は16.2℃ 34.68度 実測16.2℃ 推定15.12℃ 推定値と実測値に 差がある →次の話へ
38 26 決定係数と「説明」🤔🤔
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差 27 a, b が求められて,回帰直線が確定したとき % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi xi に対する,回帰直線による y の推定値
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差 27 a, b が求められて,回帰直線が確定したとき % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi ˆ yi = a + bxi xi に対する,回帰直線による y の推定値
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差 27 a, b が求められて,回帰直線が確定したとき % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 回帰直線が確定しても残っている, 推定値と実測値の差 ˆ yi = a + bxi xi に対する,回帰直線による y の推定値 ˆ yi yi
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差 27 a, b が求められて,回帰直線が確定したとき % %
% % % % % % % % % % % % % % % % % 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) x y a + bxi xi yi 回帰直線が確定しても残っている, 推定値と実測値の差 ˆ yi = a + bxi xi に対する,回帰直線による y の推定値 ˆ yi yi この差を[残差]という di
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 残差について,次の関係がなりたつ(付録3)
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3)
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数 相関係数の2乗 [決定係数]
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 残差と決定係数 28 残差は,回帰方程式を使って yi を予測したときの, 予測によって表現できなかった部分 d2
i = (1 − r2 xy ) (yi − ¯ y)2 残差について,次の関係がなりたつ(付録3) 残差 相関 係数 相関係数の2乗 [決定係数] 🤔🤔…
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 d2 i = (1 −
r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 d2 i = (1 −
r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 d2 i = (1 −
r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1
− r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1
− r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1
− r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n y の偏差の2乗の平均 = y の分散 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1
− r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n y の偏差の2乗の平均 = y の分散 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 29 残差の2乗の平均 d2 i = (1
− r2 xy ) (yi − ¯ y)2 より 1 − r2 xy = d2 i /n (yi − ¯ y)2/n y の偏差の2乗の平均 = y の分散 決定係数
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 30 残差の2乗の平均 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y の偏差の2乗の平均 ( y の分散) x y y di = yi – yi [残差] y i y i – y [偏差] y i x i
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 30 残差の2乗の平均 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y の偏差の2乗の平均 ( y の分散) もともと y はこんなに ばらついていたが, 回帰直線から見ると ばらつきはこんなに減った x y y di = yi – yi [残差] y i y i – y [偏差] y i x i
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味 30 残差の2乗の平均 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y の偏差の2乗の平均 ( y の分散) もともと y はこんなに ばらついていたが, 回帰直線から見ると ばらつきはこんなに減った x y y di = yi – yi [残差] y i y i – y [偏差] y i x i
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 31 回帰直線からのばらつき 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y のもともとのばらつき 決定係数 =
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 31 回帰直線からのばらつき 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y のもともとのばらつき 決定係数 = 回帰直線によるばらつきの減少の度合い
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 31 回帰直線からのばらつき 1 − r2 xy
= d2 i /n (yi − ¯ y)2/n 決定係数 y のもともとのばらつき 決定係数 = 回帰直線によるばらつきの減少の度合い = 回帰直線によって,ばらつきの何%が「説明」できたか
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき x y もとの y の分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき x y もとの y の分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき 回帰直線に対する y の分散 x y もとの y の分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき 回帰直線に対する y の分散 x y もとの y の分散
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき 回帰直線に対する y の分散 x y もとの y の分散 回帰直線に対するyの分散は
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 相関係数 = 0,すなわち 決定係数 =
0 のとき 回帰直線に対する y の分散 x y もとの y の分散 回帰直線に対するyの分散は もとの y の分散と
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 まったく変わらない 相関係数 = 0,すなわち 決定係数
= 0 のとき 回帰直線に対する y の分散 x y もとの y の分散 回帰直線に対するyの分散は もとの y の分散と
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 32 まったく変わらない 相関係数 = 0,すなわち 決定係数
= 0 のとき 回帰直線に対する y の分散 x y もとの y の分散 回帰直線に対するyの分散は もとの y の分散と 「回帰直線のまわりに散らばっている」と 説明したところで, 全く説明になっていない
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 相関係数 = 0.7 すなわち 決定係数
≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 に比べて半分になっている 相関係数 = 0.7 すなわち
決定係数 ≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 33 に比べて半分になっている 相関係数 = 0.7 すなわち
決定係数 ≒ 0.5 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 「回帰直線のまわりに散らばっている」と 説明したことで, もとの y の分散の半分を説明した x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 相関係数 = 0.9 すなわち 決定係数
≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 に比べて20%に減っている 相関係数 = 0.9 すなわち
決定係数 ≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 決定係数の意味と「説明」 34 に比べて20%に減っている 相関係数 = 0.9 すなわち
決定係数 ≒ 0.8 のとき 回帰直線に対する y の分散 もとの y の分散 回帰直線に対する y の分散は もとの y の分散 「回帰直線のまわりに散らばっている」と 説明したことで, もとの y の分散の80%を説明した x y
38 35 ところで,前回の講義で 言いかけていたことですが💬💬💦💦
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 x
y x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 回帰直線ではもとの
y の分散の 25%しか説明できていない x y x y
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 回帰直線ではもとの
y の分散の 25%しか説明できていない x y x y 回帰直線でもとの y の分散の 50%を説明している
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「中くらいの相関」とは 36 決定係数0.49 相関係数0.7 相関係数0.5 決定係数0.25 こちらのほうが,中くらいの相関関係
(分散の説明という意味では) 回帰直線ではもとの y の分散の 25%しか説明できていない x y x y 回帰直線でもとの y の分散の 50%を説明している
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 ✢ ✢
✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定
✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定
✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定
平均から離れた個体がある と安定する ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 緯度と気温の例で 37 決定係数0.712 長野〜鹿児島 決定係数0.949 平均付近に密集して いると不安定
平均から離れた個体がある と安定する ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ ✢ 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 気温 (℃) 緯度 (度) 札幌〜那覇
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 注意すべき例 38 x y こういう分布だと
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 注意すべき例 38 全体で見ると弱い正の相関に見えるが x y こういう分布だと
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 注意すべき例 38 全体で見ると弱い正の相関に見えるが x y こういう分布だと 群ごとに見ると負の相関
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 注意すべき例 38 相関係数や回帰直線は どんなデータであっても計算 「できてしまう」ことに注意 全体で見ると弱い正の相関に見えるが x
y こういう分布だと 群ごとに見ると負の相関
38 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 注意すべき例 38 相関係数や回帰直線は どんなデータであっても計算 「できてしまう」ことに注意 全体で見ると弱い正の相関に見えるが 得られた回帰直線は,
それが意味のあるものかどうか, よく考えましょう。 x y こういう分布だと 群ごとに見ると負の相関